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Abstract
The mechanisms now used to implement virtual memory –
pages, page tables, and TLBs – have worked remarkably well
for over fifty years. However, they are beginning to show their
age due to current trends, such as significant increases in
physical memory size, emerging data-intensive applications,
and imminent non-volatile main memory. These trends call
into question whether page-based address-translation and
protection mechanisms remain viable solutions in the future.
In this paper, we present a detailed study of how modern
applications use virtual memory. Among other topics, our
study examines the footprint of mapped regions, the use of
memory protection, and the overhead of TLBs. Our results
suggest that a segment-based translation mechanism, together
with a fine-grained protection mechanism, merit consideration
for future systems.

1. Introduction
Virtual memory is one of the great ideas in computer science.
The basic mechanisms used to implement VM – pages, page
tables, and TLBs – have served remarkably well since their
introduction in the 1960s. However, applications and their
memory use have changed enormously over time, in large part
due to the tremendous growth in physical memory capacities.
In the late 1960s, systems had at most a few megabytes of phys-
ical memory; servers now offer hundreds of gigabytes or even
terabytes. This growth is expected to continue and accelerate:
although DRAM scaling is slowing [32], non-volatile memory
technologies are rapidly advancing and should provide greater
density than DRAM [28], further increasing physical memory
capacity.

As a result of physical memory growth, varied applica-
tions now make heavy use of in-memory data processing, e.g.,
memcached is pervasive [18], and in-memory databases are
proliferating [31, 25, 29]. An important characteristic of many
“big-memory” applications is wide, unpredictable memory
reference patterns. For example, graph analysis has irregular
access patterns [22], and bioinformatics applications tend to
have poor locality [1]. Such applications are problematic for
virtual memory because they put more pressure on the TLB.

We believe that these technology changes and trends call
for a re-examination of VM use by modern applications. As
a basis for this reexamination, this paper presents a detailed
measurement study of VM use by today’s client and server
applications. Our goals are to characterize VM usage in order
to: (1) highlight the memory behaviors important for future
systems, (2) consider how application behaviors may change
as physical memory continues to grow, and (3) point out VM

features that may be of decreasing importance over time. The
major study findings are:
• Application memory needs are diverse. The total amount

of virtual memory allocated by our applications ranges
across three orders of magnitude. Many applications ac-
cess all of the virtual memory that they allocate, while
others access only a small fraction.

• The maximum number of virtual memory mappings ac-
tually used is in the thousands, a relatively small number
given that the maximum supported is effectively unlim-
ited.

• Applications perform most of their virtual memory allo-
cations at startup or at well-defined boundaries between
workload phases.

• Linking memory protection to virtual address translation
artificially reduces the granularity of address translation,
which may increase performance overhead.

• Breaking virtual memory mappings into page-sized
chunks means that the hardware and OS must track two
orders of magnitude more address translations than there
are virtual memory mappings, increasing TLB overhead.

These findings, along with trends in memory technology
and OS features, suggest that approaches for address trans-
lation other than TLB-accelerated page tables may be more
appropriate for future VM systems. Separating memory pro-
tection from address translation would also offer benefits, such
as supporting guard regions in large mappings. To avoid the
cost of handling TLB misses, variable-sized segments may be
a better fit for address translation than pages and superpages.
Some of these ideas are not new, and there are many tradeoffs
in using these designs over current mechanisms. This work
aims to analyze a broad range of applications so that the right
tradeoffs can be made in the future. The rest of this paper de-
scribes the measurements we performed, the results that led to
our conclusions, and ideas for future virtual memory designs.

2. Study Methodology

Our measurement study evaluated Linux applications on the
x86 platform. We instrumented the Linux kernel to report
on applications’ virtual and physical memory behavior by
emitting a trace of all memory events. Our tracing system used
infrastructure already present in the Linux kernel and imposed
no discernable overhead on the applications we study. We also
gathered data from hardware performance counters using the
Linux perf tool.

Our analysis includes only those events that occurred af-
ter the exec system call that starts each application. When
multi-process applications fork child processes, we tracked



the entire hierarchy of processes and included in our measure-
ments the memory behavior of all of them. Each new Linux
process uses its own private virtual memory map,1 introducing
its own OS and hardware overhead, so we considered all pro-
cesses to be part of the application. When processes migrated
to different cores or when applications had multiple processes
on separate cores, the kernel timestamped our trace events
using a logical clock that established a sequential ordering of
events.

We ran our applications on a server with 24 GB of phys-
ical memory, 4 Intel Xeon L5640 cores, and our modified
Linux 3.9.4 kernel. We reserved 6 GB of memory to buffer the
trace events emitted during application execution. To achieve
reproducible results and observe all virtual memory activity,
we rebooted our server before executing each application and
gathering its trace. Thus, the applications had no pages already
present in physical memory when they started running, except
any library pages shared with other processes that started when
the system booted.

Limitations. Our measurement infrastructure did not cap-
ture the virtual and physical memory usage of the kernel itself.
Certain applications may cause increased memory use by the
kernel; for example, I/O intensive-applications that directly
read or write files (rather than mmap-ing them) load file
data into the kernel’s page cache to improve performance, and
specialized applications such as VMware Workstation load
their own modules into the kernel. None of the applications
we examined in this study rely on these behaviors.

Applications. We analyzed a mix of twelve popular Linux
client and server applications, listed in Table 1. Our desk-
top client applications included two web browsers (Chrome
and Firefox) and the LibreOffice office suite. The two web
browsers have different architectures: Firefox executes many
threads in a single process, whereas Chrome uses one process
per browser tab. The experiments ran applications for approxi-
mately ten minutes, forming full sessions of executions (e.g.,
a full web browsing session).

Our server applications include a web server (Apache), a
load balancer (HAProxy), and four different data storage ap-
plications: Cassandra, Memcached, MySQL, and Redis. Only
Cassandra was written in Java; our server used OpenJDK
1.7.0_51. For Apache and MySQL, we run MediaWiki, a typi-
cal LAMP stack application, serving a snapshot of the Spanish
language Wikipedia site. The MediaWiki data and PHP code
resided in a module loaded into Apache’s address space. To
exercise HAProxy and Redis, we set up external clients to send
requests to our server; for the other applications, we generated
load using a separate application on the server itself.

Finally, we analyzed three data-processing applications:
Dedup, Graph500, and Python. Dedup and Graph500 are
benchmarks for compressing data and analyzing large graph
data, respectively (Dedup is part of the Parsec benchmark

1While there are a few exceptions, none applies to our application suite.

App. Description Workload

Desktop client applications
chrome Chrome web browser Open 30 pages in separate windows,

closing every 5th window
ffox Firefox web browser Open 30 pages in separate tabs, closing

every 5th tab
office LibreOffice word

processor
Type 50 KB of text then save document

Server applications
apache Apache web server Serve five MediaWiki page requests
proxy HAProxy HTTP load

balancer
Proxy 300 concurrent connections to
three target servers

cass Cassandra column store
(Java)

100K inserts followed by 100K
gets/updates

mcache Memcached key-value
cache

Load 10 GB of data, then serve 80%
gets and 20% updates at 25,000 req/s

mysql MySQL relational DB Serve five MediaWiki page requests
redis Redis key-value store Continuous puts of 1 KB values from

four clients

Data processing applications
dedup Data compression

benchmark
Input size: 672 MB disk image file

graph Graph500 graph
benchmark

Scale factor 24 (10 GB graph)

python Python runtime
environment

Execute analysis script for this
measurement study

Table 1: The suite of twelve applications executed and ana-
lyzed in this study.

suite [12]). For Python, we executed one of the trace analysis
scripts used in this study.

Terminology. Throughout this paper, we describe the mem-
ory allocations of each application in terms of virtual memory
areas, or VMAs. Each VMA represents an item of code or data
stored in a contiguous region of virtual memory and spans
one or more contiguous virtual pages; the minimum size of
a VMA is one page (4 KB on x86 and ARM architectures).
The entire VMA must have the same set of memory access
permission bits (read, write, or execute). VMAs may be pri-
vate to a particular process or shared across processes; private
VMAs may still be read-shared across processes in physical
memory (e.g., after a fork), but are marked as copy-on-write.
A VMA is equivalent to a struct vma in the Linux kernel
code. The full set of VMAs for a process is referred to as its
memory map.

This paper uses the verbs “allocate” and “deallocate” to
describe the creation or removal of VMAs in a process’ vir-
tual address space. The term “mapped” describes the VMAs
present in a process’s virtual address space at any specific time.
A VMA may be file-backed, meaning that it is associated with
a particular file that has been mapped into the virtual address
space. VMAs that are not file-backed are anonymous; we refer
to anonymous VMAs with read-write access permissions as
heap VMAs. A VMA with no read, write, or execute access
permissions set is known as a guard region.

3. Results
Our study aims to answer six basic questions about virtual
memory usage by today’s applications:
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App. Total VMAs % Anon % File %Guard % Libs

redis 34 38 24 6 32
proxy 44 20 30 0 50
dedup 51 45 14 20 22
graph 57 30 19 11 40
mysql 124 31 15 19 35
python 312 25 47 13 14
mcache 363 50 2 44 4
office 945 10 28 2 61
cass 1021 36 14 32 18
apache 1235 24 60 1 15
ffox 2724 29 22 3 46
chrome 7666 32 43 8 17

Table 2: Maximum number of VMAs mapped in each applica-
tion’s address space at any point during execution, and the
category distribution.

1. How many and what type of VMAs do applications use?
2. How do VMA usage patterns change over time?
3. How do applications use differently-sized VMAs to map

their virtual address space?
4. How are VMAs allocated and resized?
5. How are protection modes used?
6. How is physical memory used?

3.1. Number and Type of VMAs

Current systems can support an effectively infinite number
of VMAs mapped into an application’s virtual address space,
limited only by the size of the address space and storage capac-
ity for page tables. However, applications do not make use of
this flexibility. Table 2 shows the maximum number of VMAs
mapped by each application. While we see a three order of
magnitude range in VMAs, even at the high end the number
is relatively small. Over half of our applications use fewer
than 400 VMAs. chrome and ffox are the highest – web
browsers have much of the functionality and complexity of an
OS and rely heavily on virtual memory management. chrome
and apache have high VMA counts because they use multi-
ple processes, each with its own private virtual memory map.
Considered on a per-process basis, apache and chrome use
only hundreds of VMAs per process.

Table 2 also classifies the VMAs according to the high-level
type of data that each one maps. Libs includes non-writable
VMAs used to map dynamically linked libraries. Guard VMAs
are guard regions with no access permissions. File VMAs are
used to map files (other than shared libraries) into the virtual
address space, while Anon includes the remaining anonymous
VMAs, primarily read-write heap VMAs.

Many applications make heavy use of memory-mapped
files, and file-backed VMAs outnumber even anonymous heap
VMAs in some applications. Surprisingly, our analysis shows
the large number of VMAs used to map shared libraries and
guard regions. For example, 46% of VMAs used in ffox are
for libraries. When each shared library is dynamically linked
into a process’s address space at startup or during execution,
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Figure 1: Total count of VMAs mapped in the application’s vir-
tual address space across its execution time (left). Time is nor-
malized across the x-axis: from one end of the x-axis to the
other end is the total execution time for the application. Total
amount of virtual memory mapped by each application during
its execution (right).

four VMAs are typically allocated: one each for code, read-
only data, and read-write data (e.g., global variables that the
code may change) and a guard region with no access permis-
sions. The VMAs included in the Libs category do not include
those for read-write data since a write to these areas would
trigger a copy-on-write, and the VMA would no longer be
shared.

Summary. The number of virtual memory areas needed to
hold all of a process’s code and data items ranges across
three orders of magnitude, from tens of VMAs to a few thou-
sand. Many applications allocate large numbers of VMAs for
memory-mapped files and guard regions. Additionally, appli-
cations may need to read data and execute code from tens or
sometimes hundreds of shared libraries.

Design Implications. Although the number of VMAs sup-
ported is effectively unbounded, in practice applications use
relatively few. The overhead of performing virtual address
translation using pages and TLBs is growing; our analysis
shows that this overhead results more from the breaking of
virtual memory mappings into many small pages than from
the total number of VMAs, which is modest. Therefore, future
virtual memory systems should aim to increase page sizes to
better accommodate large VMAs or even map each VMA to
physical memory directly, i.e., without dividing it into pages
(as with direct segments [6]).

3.2. VMAs Changes over Time

Figure 1 (left) plots the number of VMAs mapped over time.
In all applications we studied, the number of VMAs increases
dramatically when the application starts. This can be attributed
to the dynamic linking of shared libraries or to the allocation
of thread data. One VMA is initially allocated for each thread’s
stack, a substantial effect for heavily multi-threaded applica-
tions like ffox and cass. Applications may allocate other
per-thread VMAs as well.
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After startup, applications exhibit different allocation pat-
terns. proxy and redis allocate no new VMAs after startup;
however, existing VMAs may be resized, as described in
Section 3.4.1. mysql and office allocate just a few new
VMAs during their execution. Other applications exhibit clear
phased behavior, e.g., graph has a stable period as it builds
the graph in memory, followed by a series of graph traversals
that allocate and deallocate VMAs; dedup shows a similar
phase shift during its execution as well. Finally, chrome,
ffox, apache, and mcache allocate new VMAs in re-
sponse to new workload requests; for example, each new tab
or window opened in the web browsers leads to the creation
of many new VMAs. The particular web page that is visited
also impacts allocation. For example, the heavy execution of
JavaScript in the browser causes new VMAs to be allocated,
and the largest jump in the chrome and ffox plots occurs
when visiting a multimedia-heavy website that loads plugins,
such as Flash.

The number of VMAs used by an application almost always
increases over time. VMA deallocations are relatively rare
and are often quickly followed by more allocations. Appli-
cations that deallocate VMAs include dedup, apache, and
chrome. apache and chrome deallocations are caused by
terminating processes, i.e., after a request has been handled or
a browser window has been closed.

Figure 1 (right) shows the total amount of virtual memory
over time, which varies across three orders of magnitude –
from barely tens of megabytes for proxy to just over ten
gigabytes for mysql and cass. The number of VMAs used
does not reliably predict of the amount of virtual memory an
application uses; while chrome, ffox and cass use both
a large amount of virtual memory and many VMAs, mysql
and graph use few VMAs to map a lot of virtual memory,
and apache uses many VMAs for a small amount of virtual
memory. In today’s systems with demand paging, applications
may allocate more virtual memory than they actually access
and bring in to physical memory. We discuss demand paging
and resident memory in Section 3.6.1.

Summary. Applications may allocate VMAs in response to
client requests and application workload requirements. How-
ever, in many applications the number of VMAs allocated
during execution is significantly smaller than the number allo-
cated at startup. VMA deallocations occur infrequently. The
number of VMAs used to map virtual memory does not always
increase as the amount of mapped virtual memory increases.

Design Implications. At certain points during an applica-
tion’s execution (e.g., shortly after application startup or after
a new phase of execution has begun) it would be beneficial
for the OS to reconsider the application’s memory mappings.
At these points, the OS could aggressively optimize physical
memory layout and the mappings from virtual to physical
memory, for example, by compacting physical memory re-
gions to make room for more superpage mappings. By enhanc-
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Figure 2: Cumulative distribution of of total mapped VMAs and
their sizes.

ing the OS so it can recognize these points, or by adding an
interface so applications can notify the OS when these points
occur, optimizations could be performed that would have the
greatest impact on the application’s execution.

3.3. VMA Size Distribution

Figure 2 shows how applications use differently-sized VMAs
to map their virtual address space. Figure 2 (left) shows a
CDF of VMA sizes. Figure 2 (right) divides the cumulative
size of the VMAs by the total size of virtual memory that the
application has mapped. Both of these figures are calculated
when each application’s execution has mapped the most virtual
memory. They illustrate a pattern similar to file systems [17]
and other domains: although most VMAs are small, the total
amount of mapped virtual memory is dominated by a few
large VMAs. In most applications, 4 KB VMAs (the base
page size on x86, and hence the minimum VMA size) are
the most frequent, but many other VMA sizes between 4 KB
and 256 KB are widely used. Data-intensive applications (like
graph, dedup and mcache) use larger VMAs. mcache,
an outlier, has nearly 50% of its VMAs that exceed 32 MB.

Figure 2 (right) also shows that the majority of virtual mem-
ory in most applications is mapped using VMAs with sizes
between 2 MB and 1 GB (the two x86-64 superpage sizes).
The rightmost applications in this figure use just one or two
large VMAs to map most of their data. redis keeps most
of its key-value data in a 600 MB VMA; dedup uses two
VMAs with the same size as the input file, about 700 MB
each; cass uses one 10 GB VMA for its Java heap; graph
uses two VMAs that are just over 4 GB to hold its large graph
data; and mysql uses a 10 GB VMA for its buffer pool. These
huge VMAs are all anonymous read-write heap regions.

Summary. Most VMAs are small, but large VMAs are re-
sponsible for mapping most of the virtual address space. Most
virtual memory is mapped with VMAs whose sizes lie in be-
tween the superpage sizes that x86-64 hardware provides or
with VMAs larger than the largest superpage size. Some, but
not all, memory-intensive applications allocate one or two
very large VMAs to hold their heap data.

Design Implications. The effectiveness of using fixed-size
superpages to reduce address translation overheads is fun-
damentally limited. Most virtual memory is mapped using
VMAs larger than 2 MB; thus, even if x86-64 superpages
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were used whenever possible, each of these VMAs would still
require many 2 MB superpages, each with its own TLB entry.
Similarly, the applications with the largest memory usage rely
on VMAs that exceed 1 GB, the largest x86-64 superpage
size; hence multiple 1 GB superpages would be required to
map these VMAs. A small set of fixed superpage sizes will,
therefore, fail to effectively map all VMAs for all applications.
New virtual memory designs with more flexible address trans-
lation mechanisms would significantly reduce the number of
mappings needed for address translation; for example, every
VMA could be mapped to physical memory using exactly one
variable-length segment, or perhaps more flexible paging im-
plementations could allow new superpage sizes to be set for
every application or on every reboot.

3.4. Memory Allocation and VMA Resizing

Linux applications can allocate virtual memory directly from
the kernel using the mmap system call (or the legacy sbrk)
or via a memory allocation library. Using source code analysis
and the Linux ltrace library tracing facility, we observed
that our applications generally did not allocate anonymous
memory directly from the kernel. This applies even to high per-
formance server applications, such as mcache and redis;
these applications, like proxy or dedup, do not call mmap
in their source code.

Although applications nearly always allocate their memory
using a memory allocation library, they do not always use
the same one. Most use the standard glibc malloc; redis
uses jemalloc by default, and ffox uses its own custom
Mozilla memory allocator. These allocators take different ap-
proaches to obtaining memory from the operating system.
mcache uses numerous 64 MB VMAs to map nearly 10 GB
of virtual memory. In contrast, redis uses a single large
VMA (600 MB) to map nearly all its virtual memory. How-
ever, Figure 1 shows that the amount of virtual memory used
by redis (like mcache) grows throughout its execution, in-
dicating that redis continually expands the single VMA that
holds its data. mysql takes a third approach, common for
databases: it pre-allocates a single, huge (10 GB) VMA for its
buffer pool, then manages memory itself within that region.

Summary. Even high-performance server applications rely
on the malloc library; few applications mmap their own
memory.

Design Implications. Memory allocators included in stan-
dard language libraries and runtimes should be considered
part of the virtual memory system as a whole. Future virtual
memory designs to change the interface between the OS and
user-space could thus be kept within the memory allocation
library, allowing most application code to remain unmodified.
Changing the interface to malloc, however, would require
extensive application changes.
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Figure 3: Count of resize operations that either expand or de-
crease the size of a VMA. Application execution times are nor-
malized across the x-axis.
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page

rw- guard region

64 MB

guard region

malloc library initialization: Application makes malloc requests:

64 MB - 1 page

2 4KB
pages

rw- guard region

64 MB - 2 pages

...

...

...

rw- guard region

Figure 4: Demonstration of malloc’s reservation behavior,
which relies on VMA resizing and page-granularity memory
protection.

3.4.1. Resizing and Reserving VMAs

In addition to being allocated and deallocated, VMAs can
be resized, e.g., by using the mremap system call. Figure 3
shows the number of VMA resizes performed by each appli-
cation throughout its execution. Every application performs
some resize operations, both expanding and decreasing its
VMA sizes at process startup and when shared libraries are
dynamically loaded.

In addition to this initial VMA resizing, many applications
perform thousands of resize operations throughout their ex-
ecution due to memory allocator behavior. For jemalloc,
used by redis, resize operations are used to allocate more
memory, as described above.

The standard glibc malloc performs many resize opera-
tions as well. Figure 4 demonstrates how malloc reserves
contiguous 64 MB areas of virtual memory to serve an ap-
plication’s small object requests. Initially, these VMAs have
no access permissions set. As the application makes repeated
malloc() requests, these areas are converted from guard
regions to read-write memory by extending a read-write VMA
at one end by one page and shrinking the guard VMA at the
other end by one page. Each of these reserved areas becomes
a “free list” for a particular allocation size, and malloc’s
metadata techniques require that these areas be contiguous in
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memory as much as possible; by reserving the virtual memory
in advance with a guard region, malloc ensures that when
the read-write VMA must be extended, the adjacent virtual
memory will usually be available and will not collide with
other VMAs.

Both dedup and mcache are heavy users of malloc,
which explains why they have the most resize operations in
Figure 3. The malloc behavior described here also explains
why mcache keeps all of its virtual memory in 64 MB chunks,
as this is the default size of malloc’s reserved areas; when
the application fills up one of these areas, malloc simply
allocates a new one and continues to fill it in the same way.

Summary. Applications commonly resize VMAs. glibc
malloc performs resize operations frequently due to its be-
havior that reserves large contiguous areas of virtual memory,
but only applies read-write permissions one page at a time.

Design Implications. Since paged virtual memory has been
a feature of OSs and processor architectures for decades, it is
not surprising that applications have evolved to take advantage
of it. Resizing VMAs would be a challenging behavior for
virtual memory systems that do not implement fine-grained
paging for address translation, but the frequency of resizing
could be reduced by modifying the standard malloc library,
as well.

Having separate mechanisms for address translation and
memory protection could be beneficial for the use of reserved
virtual memory areas: the entire reserved VMA could be
mapped into physical memory at once. Then, only the pro-
tection boundaries would need to be changed on a resize,
eliminating the need to relocate physical memory.

3.5. Uses of Memory Protection

Virtual memory is used not just for memory translation but also
for protection. This section analyzes the connection between
application data types and their memory permissions, and the
frequency of permission changes.

3.5.1. Types of Data in VMAs

Figure 5 helps us to visualize part of ffox’s virtual address
space during its execution. The vertical axis indicates combi-
nations of protection bits and VMA types: VMAs may have
read, write and execute permissions set or unset; may be pri-
vate to this process or shared with other processes; and may
be file-backed or anonymous. Note that even “private” VMAs
may still be shared across processes in physical memory, by
using copy-on-write.

The ffox address space appears fragmented; this is typical
of an application that dynamically links to numerous shared
libraries. As described previously, loading each shared library
creates four VMAs: code (r-xpf), read-write global data
(rw-pf), read-only data (r-pf), and a guard region (--pf).
These VMAs are typically contiguous in virtual memory; this
is easy to see in Figure 5 where the bars for these four permis-
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Figure 5: Visualization of part of ffox’s virtual address space.
The horizontal axis is the process’ linear virtual address
space; each horizontal bar in the plot represents a VMA allo-
cated with the particular permission combination listed on the
vertical axis. The permission bits are read (r), write (w), and
execute (x); shared (s) vs. private (p); and file-backed (f) vs.
anonymous (a).

sion rows are usually aligned vertically. Shared library VMAs
are usually small, often just one 4 KB page.

Heap VMAs with rw-pa permissions comprise most of
the address space for ffox, like most applications we stud-
ied. Many of ffox’s heap VMAs are near each other in vir-
tual memory, but ffox’s memory allocator prevents them
from being contiguous. Likely reasons for this behavior are to
cause unintentional accesses beyond a VMA boundary to hit
unmapped memory and segfault rather than hitting adjacent
memory and causing corruption, or to make it easier to unmap
these VMAs. Each heap VMA is allocated using mmap; no
applications use the legacy sbrk interface.

Figure 5 also shows some anonymous guard regions with
--pa permissions; these VMAs may be used to protect thread
stacks (which are allocated with rw-pa permissions), or to
detect overflows in other kinds of VMAs. While these anony-
mous guard regions are small, other applications use large
ones, e.g., to reserve contiguous memory as described in Sec-
tion 3.4.1.

We have observed other types of data being mapped into
the virtual address space of some applications that are not
shown in Figure 5. Every process has one rw-pa VMA for
its stack, located at the extreme upper end of the address space.
Some applications use shared memory areas. Applications use
shared file-backed mappings both to access persistent data and
to create a shared region for inter-process communication via
the mapping of temporary files. Anonymous shared VMAs are
also used for inter-process communication.

Summary. The Linux dynamic linker “fragments” virtual
address space by splitting up the code and data regions for
each shared library into separate VMAs. Applications use
guard regions to detect a variety of invalid memory accesses

6



and to prevent writeable VMAs from being placed adjacent
to each other in virtual memory. Sharing of virtual memory
across processes is fairly uncommon.

Design Implications. Figure 5 demonstrates that some appli-
cations could coalesce their VM into a small number of VMAs.
As described above, ffox allocates many heap VMAs that
are nearly adjacent to each other; coalescing these into just
one VMA could improve translation performance by leading
to better use of superpages. Future virtual memory systems
may need to reconsider whether guard regions and memory
placement are the optimal mechanisms for avoiding corruption
due to overflow because these mechanisms prevent coalesc-
ing. A virtual memory system with separate ways to configure
address translation and memory protection could use larger
VMAs for address translation while still preserving the guard
regions between heap allocations.

3.5.2. Frequency of Protection Operations

We also examined the occurrence of protection change oper-
ations over time; we do not present the data here, but note
that the occurrence of protection changes tends to mirror the
occurrence of VMA allocation and VMA resize operations. In
other words, protection changes appear to occur in conjunction
with other VMA modifications, and not in isolation.

Design Implications. While our analysis suggests that cur-
rent applications do not rely heavily on frequent or sophisti-
cated use of memory protection, that does not mean they would
not like to. The memory protection provided by Linux on x86-
64 is limited in many ways: memory protection checking and
address translation are coupled, the minimum granularity for
protection changes is the 4 KB base page, and hardware pro-
tection domains are at the process level rather than the thread
level. Today’s applications likely avoid using memory protec-
tion because of these limitations; for example, mysql and
redis cannot use different memory protections within their
buffer pools without forcing their large VMAs to be broken
up into multiple smaller VMAs. Future virtual memory de-
signs should consider decoupling memory protection from
address translation to allow for finer-grained memory protec-
tion and more flexible protection domains. Previous work has
shown that this flexibility would be valuable to many applica-
tions [13, 35].

3.6. Connecting Virtual memory To Physical Memory

In this section we shift from application behavior in the virtual
address space to usage and mapping of physical memory.

3.6.1. Demand Paging and Resident Physical Memory

Demand paging, a feature of current virtual memory systems,
does not establish the mapping from a virtual page to a phys-
ical page until the application accesses the virtual page for
the first time. We used our tracing infrastructure to track the
amount of resident memory, or virtual memory that has been

App Ratio Resident Virtual Diff.

apache 19.5% 38.41 MB 206.94 MB 168.53 MB
cass 96.9% 10.19 GB 10.62 GB 441.36 MB
chrome 3.9% 254.98 MB 6.63 GB 6.38 GB
dedup 95.2% 1.40 GB 1.48 GB 86.14 MB
ffox 39.5% 489.72 MB 1.24 GB 781.68 MB
graph 99.4% 8.66 GB 8.79 GB 140.74 MB
mcache 99.6% 9.96 GB 10.11 GB 146.96 MB
mysql 8.3% 824.91 MB 11.03 GB 10.23 GB
office 94.1% 80.16 MB 86.02 MB 5.87 MB
proxy 93.1% 1.27 MB 1.36 MB 100.00 KB
python 98.4% 1.17 GB 1.21 GB 31.71 MB
redis 92.2% 558.77 MB 612.23 MB 53.47 MB

Table 3: Ratio of resident physical memory to mapped virtual
memory. The 95th percentile ratio during each application’s
execution time is shown, along with the absolute difference
between the virtual and physical memory sizes at that time.

demand-paged into physical memory, for each application
over its execution.

Table 3 shows the extent to which our applications rely
on demand paging to avoid making certain virtual memory
resident in physical memory. After every virtual or physical
memory allocation or deallocation, we calculated the ratio of
resident physical memory to mapped virtual memory. We then
took the 95th percentile of these ratios across the application’s
entire execution to approximate the “maximum” ratio while
filtering out instantaneous spikes or drops in the ratio. At
this 95th percentile ratio, the table also displays the absolute
amounts of resident and virtual memory, and the difference
between these values.

Table 3 shows a clear division between those applications
that access and load into physical storage nearly all of the
virtual memory that they allocate, and those that do not. Of
the non-intensive applications, chrome and mysql access
less than 10% of their virtual memory during execution, while
apache and ffox access less than 40%. The data is some-
what misleading for apache and chrome because they are
multi-process applications: each new process inflates the total
virtual memory size because it gets its own virtual memory
map, but some of this memory is marked as copy-on-write and
is shared in physical memory across processes. Unfortunately,
our current tracing infrastructure cannot tell us how much of
each application’s resident physical memory is shared across
multiple processes.

We suspect that ffox’s reliance on hundreds of shared li-
braries results in its sparse use of its virtual memory, i.e., many
of the libraries in its address space are never accessed during
execution. Similarly, mysql allocates more than 10 GB of vir-
tual memory that is never accessed and therefore never loaded
into in physical memory. The reason for this discrepancy is
that mysql sets its buffer pool size statically to 10 GB, but
our current workload accesses only a small portion of the data
kept in the database.

When viewed as a timeseries across the application’s execu-
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tion (not shown here), the ratio of resident memory to virtual
memory generally remains constant after application startup.
The only applications with significant changes in this ratio
during execution are apache, as processes are started and
killed to handle requests, and the chrome and ffox web
browsers, because of their dynamic workloads.

Finally, we note that even in applications that access nearly
all of their virtual memory, making it resident in physical
memory, the amount of non-resident virtual memory is still
sizable. For example, cass, graph and mcache all have a
resident-to-virtual ratio greater than 96%, but still have hun-
dreds of megabytes of virtual memory that has not yet been
accessed and made resident.

Summary. Many applications load into DRAM more than
90% of their virtual memory. The use of paged VM with on-
demand page loading benefits applications with large address
spaces and unpredictable dynamic workloads, such as web
browsers and web servers.

Design Implications. Demand paging is clearly a useful fea-
ture for desktop applications with large, sparsely used address
spaces. However, in many environments today, demand paging
is not nearly as critical, and its usefulness will likely decrease
further as physical memory capacities grow. Most applications
that run on data center servers load nearly all of the virtual
memory that they allocate; this is demonstrated by our data
for cass, mcache and redis. For data center servers, it
is not useful to defer backing virtual memory with physical
memory: these machines are provisioned to ensure the correct
amount of physical memory is available so they will never
swap. In fact, many of these applications would benefit from
having all their virtual memory allocations backed by physical
memory immediately to avoid introducing page fault latency
at unpredictable points in the future.

It may be useful for future virtual memory systems to pro-
vide efficient alternatives to demand paging. This would let
applications that plan to use all of their virtual memory avoid
unpredictable page faults later, and it could potentially ease
the use of superpages.

3.6.2. TLB Miss Handling

To measure the impact of TLB misses during the application
execution, we use the hardware performance counters in our
server’s Intel Westmere CPU. We determined the percentage
of execution time that is spent handling misses in the data
TLB by enabling the DTLB_MISSES.WALK_CYCLES counter,
which counts the number of cycles that the x86 hardware page
table walker spends walking page tables after a second-level
TLB miss, then dividing by the total cycles spent executing
each application’s processes. To best understand the impact of
TLB misses, we enabled this performance counter only after
each application had been started, and only during the most in-
tensive period of the application’s workload (e.g., for mcache
and cass, we only measured TLB misses that occurred while
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Figure 6: Percentage of total execution cycles spent walking
each application’s page table to handle data TLB misses. The
percentage of execution time for graph is 58%, outside the
y-axis scale; we have omitted it from this plot.

a mix of gets and puts were being performed, and not while
the store was initially being loaded with data).

Figure 6 shows the percentage of execution time spent han-
dling TLB misses for each application. Nearly all page table
walk cycles result from load misses in the TLB, rather than
store misses. graph is off the charts because of the extremely
poor memory locality of its graph analysis workload; Basu et
al. [6] found similar results for this application and reported
that the time spent on TLB misses dropped to about 10%
with 2 MB superpages enabled and to about 1.5% with 1 GB
superpages enabled.

The other applications spend a few percent of their execu-
tion cycles waiting for the page table walker to handle TLB
misses. The data storage applications – mysql, mcache,
redis and cass– spend more time handling TLB misses
because of their large data sets and the random requests to keys
or records that our workloads make. Particularly in virtualized
environments, where the cost of handling a TLB miss may be
as much as four times higher [7], even this relatively low miss
rate can be significant. There is a weak positive correlation
between the amount of virtual memory that an application uses
and the time spent handling TLB misses. Besides this, there
does not appear to be a strong relationship between the data
in Figure 6 and the other virtual memory data that we have
presented. For example, using more VMAs does not necessar-
ily mean that an application will spend more time handling
TLB misses, as graph, redis and mysql are among the
applications with the fewest VMAs.

Finally, we note that none of our applications was explicitly
compiled or configured to take advantage of superpages. Using
superpages would likely reduce the amount of time spent
handling TLB misses to some degree. Other recent research
has explored TLB misses, the impact of superpages, and other
optimizations in more detail [6, 9, 10, 11, 26, 27].

Summary. The amount of time that applications spend han-
dling TLB misses is non-trivial, generally a few percent of the
application’s execution cycles, but as high as 58% for certain
workloads. If used effectively, superpages would likely reduce
the miss handling time.

8



4
K

B

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
M

B

2
M

B

4
M

B
Base page size

0.0%

0.0%

0.1%

1.0%

10.0%

100.0%

1000.0%

10000.0% apache

cass

chrome

dedup

ffox

graph

mcache

mysql

office

proxy

python

redis

Internal fragmentation overhead for base page sizes

P
e
rc

e
n
t 

o
v
e
rh

e
a
d

Figure 7: Additional internal fragmentation that would be in-
troduced by increasing the base page size beyond 4 KB. This
overhead is in addition to any internal fragmentation that cur-
rently exists with 4 KB base pages.

Design Implications. The frequency of TLB misses for an
emerging class of large-memory data analysis applications
motivate the need for a virtual memory system that does not
rely so heavily on the TLB. We make such a proposal in
Section 4, based on the results of our study.

4. Future Virtual Memory Systems

Based on the results of our measurement study of virtual
memory behavior, we offer two high-level recommendations
for the design of future virtual memory systems:

1. flexible, segment-based address translation capability
2. decoupled, page-based protection mechanisms

4.1. Variable-Sized Address Translation

One problem we observed with today’s virtual memory sys-
tems is the use of rigid, fixed-size pages for performing virtual-
to-physical address translation. The 4 KB base page size is a
relic of the 1960s; even combined with larger superpages, it re-
sults in a tremendous number of mappings that must be tracked
by the virtual memory system. This number only increases as
the size of physical memory continues to grow.

The result is that TLBs map an increasingly small fraction of
the virtual address mappings. Despite much effort to improve
TLB performance – e.g., using fully-associative caches that
consume up to 15% of chip power [19] – it has been a losing
battle. We have seen that TLB misses comprise more than half
the cycle cost of a graph benchmark that represents a class of
emerging data analytics applications. Others have reported that
page-based virtual address translation imposes a considerable
cost in virtualized environments [7].

Application 4KB
4KB,
2MB

4KB,
2MB,
1GB VMAs

apache 62,991 15,468 – 1,235
cass 2,798,628 31,563 26,453 1,018

chrome 947,939 244,292 – 7,666
dedup 400,855 3,297 – 46
ffox 327,201 93,674 – 2,716
graph 2,304,846 6,368 2,280 56
mcache 2,648,846 81,582 – 362
mysql 2,892,282 7,687 2,577 98
office 31,890 3,785 – 950
proxy 1,646 624 – 44
python 319,837 15,281 – 300
redis 156,732 877 – 33

Table 4: Minimum number of virtual to physical memory map-
pings needed when each application’s VMAs are broken up
using x86 base pages and superpages. Dashes indicate that 1
GB superpages do not help for this application.

4.1.1. Why Not Larger Pages?

Possible ways to reduce the number of virtual to physical
memory mappings include increasing the base page size, or
using existing architectural support for multiple page sizes.
The former wastes memory due to internal fragmentation.
Figure 7 shows the amount of additional fragmentation that
would be introduced in our test applications by increasing
the base page size. Because many of these applications create
numerous small mappings, the benefits are limited: a modest
increase in the base page size to perhaps 16 KB or 32 KB
would be feasible, but larger base page sizes would introduce
too much additional fragmentation. The latter is not likely to
significantly reduce the total number of virtual to physical
memory mappings required, either. To illustrate the limitations
of fixed-size pages and superpages, Table 4 counts the mini-
mum number of mappings needed for each application when
the largest page sizes available are used for each VMA. The
final column shows the total number of VMAs. In every case,
the resulting number of virtual-to-physical mappings is at least
one order of magnitude greater than the number of VMAs.

The results in Table 4 assume that superpages are used per-
fectly: every memory region is mapped using the largest page
sizes possible. In practice, achieving this requires substan-
tial support from operating systems and applications [33, 24],
and Linux application and kernel developers have repeatedly
complained of the complexity of implementing and using su-
perpages [14, 15, 16].

4.1.2. Segment-Based Address Translation

We believe that future virtual memory systems should look
to perform virtual address translation without using fixed-size
pages in order to move the number of virtual to physical map-
pings closer to the actual number of VMAs that applications
allocate. By doing this, reliance on the small TLB cache will
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be reduced and application performance will improve.
Figure 2 shows that the sizes of applications’ VMAs vary

widely, and that for each application may use different VMA
sizes to map the majority of its virtual memory (e.g., 64 MB
VMAs for mcache, but 512 MB VMAs for chrome). Be-
cause these VMA sizes do not correspond well to the x86
page sizes, a large number of virtual to physical mappings are
required and TLB performance suffers. This demonstrates an
inherent limitation of trying to use a small set of fixed page
sizes to map applications’ VMAs and suggests that a more
flexible approach to virtual address translation is needed.

We advocate variable-sized segments for address translation
in future virtual memory systems. Recent research has already
demonstrated the benefits of using one large segment for heap
allocations in certain server-class applications [6]; we believe
that extending this approach to allow applications to use many
segments could be fruitful for the more general applications we
have studied here. Managing physical memory using segments
has some well-known drawbacks, such as increased external
fragmentation and the difficulty of expanding segments, but
operating systems today are already dealing with these issues
again due to the use of superpages. In today’s systems with
huge amounts of physical memory that may be running latency-
sensitive web workloads, trading off some amount of memory
fragmentation to eliminate TLB misses when segments are
accessed is likely worthwhile.

Virtual memory features that rely on small page granularity,
such as demand paging, would have reduced effectiveness
with segment-based address translation because they would
have to operate on entire segments at a time. However, our
results suggest that many important applications do not rely
heavily on demand paging. We believe that the importance of
demand paging and other page-based virtual memory features
will continue to decrease in future systems; for example, if
future computers use only non-volatile memory [2] with no
block storage devices, then demand paging no longer makes
sense: all data are already resident in memory at all times.

4.2. Decoupling Protection from Address Translation

We have seen many cases where memory protection require-
ments cause applications to allocate more, smaller VMAs than
would otherwise be necessary. For example, Table 2 shows that
applications frequently use guard regions to protect against
overflows and invalid memory accesses. Figure 5 shows that
ffox allocates its heap VMAs with small gaps between them
to avoid data corruption on buffer overflows; it also shows that
the Linux dynamic linker breaks up every shared library into
multiple adjacent VMAs with different permissions.

These examples arise because current architectures com-
bine memory protection checks and virtual address translation
into the same mechanism: both are specified in the page table
entries. We advocate rethinking CPU architectures to separate
these two concerns. This could be achieved by using a sep-
arate page-based mechanism to specify access permissions

along with our proposed segment-based address translation
mechanism.

Decoupling protection checks from address translation
would provide an opportunity to specify memory protection
on individual pages within a wider virtual-to-physical memory
mapping. This could reduce the number of address mappings
required even beyond the number of VMAs shown in Table 4.
For example, instead of allocating numerous 1 MB VMAs that
are not directly adjacent, ffox could allocate a single larger
VMA but still specify guard protections on pages within the
VMA to detect buffer overflows. This approach could poten-
tially be pushed even further to enable finer-grained protection
(e.g., at cache-line granularity).

One might be concerned that this protection mechanism
would introduce many of the same complexities as existing
page-based virtual memory translation, such as requiring a
TLB-like protection cache. An important difference is that
the address translation must be performed early in the CPU
pipeline because the memory access depends on the result;
however, the protection check does not need to happen this
early. It can be performed in parallel with the memory access
and other processing, as it can be completed any time before
the instruction commits.

5. Related Work

An extensive body of research on virtual memory systems
and optimizations extends back more than fifty years. In this
section, we briefly focus on architectural research related to
the learnings and implications of our measurement results. Par-
ticularly relevant in this context are recent studies of enhanced
TLB design, extensions to address translation for big memory
applications, and single-address space systems.

Enhanced TLB designs. As awareness of the performance
overheads of TLBs has grown in recent years, many research
projects have attempted to make microarchitectural enhance-
ments to improve TLB performance in three broad categories:
increasing TLB coverage (or “reach”) to reduce miss rates,
prefetching TLB entries to reduce miss rates, and reducing the
cost of handling TLB misses.

Coalesced Large-Reach TLBs [27] adds logic to TLBs that
merges the entries for up to 8 contiguous pages into one entry,
leaving room for more entries to increase TLB reach. Pham et
al. [26] extend this approach to coalesce mappings that are not
perfectly contiguous but do exhibit weakly clustered spatial
locality. Others have attempted to share TLB cache structures
more effectively [9]. Basu [5] explored a mechanism to allow
a TLB entry to be used for a superpage of any size. Swanson
et al. [34] instead propose adding another layer of indirection
inside of the memory controller itself to increase TLB reach.

Recency prefetching [30] extends page table entries to keep
track of which pages are typically referenced together tem-
porally and then uses this history to prefetch TLB entries
when one of the pages is referenced. Kandiraju and Siva-
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subramaniam [20] surveyed the effectiveness of prefetching
techniques previously proposed for data caches and proposed
a new prefetching mechanism that reduces the spatial over-
head of recency prefetching. With the increasing prevalence of
multicore processors, Bhattacharjee and Martonosi proposed
inter-core cooperative TLB prefetchers [11] to take advantage
of common TLB reference patterns across cores.

Most current Intel and AMD x86 architectures use MMU
caches to reduce the cost of the page table walk that must
be performed after a TLB miss. These structures have not
received much research attention until recently, however. Barr
et al. [3] surveyed the different MMU cache structures used
by Intel and AMD processors and evaluated several alternate
structures. This work demonstrated that radix tree page tables
with MMU caches should require far fewer total memory
accesses for address translation than hash-based inverted page
tables. Bhattacharjee [8] proposed two further improvements
to the MMU cache: a combined OS and hardware technique
to coalesce MMU cache entries, and a shared MMU cache
rather than private, per-core MMU caches. SpecTLB [4] uses
speculation rather than more caching to hide the latency of
most page table walks on TLB misses.

While these techniques to enhance TLBs improve perfor-
mance, they do not address the underlying cause of address
translation overhead: the rigidity of a page-based approach
that tries to map all applications’ virtual memory areas using
a small set of page sizes. These techniques also do not address
the second pressing problem with current virtual memory sys-
tems, the complexity of managing multiple page sizes; in fact,
they might be a step backwards in this regard because they add
even more complex logic to the CPU, MMU or OS. Moreover,
even with these enhancements to improve TLB reach, the ef-
fectiveness of a TLB’s cache-based approach is still limited
for applications that use large amounts of memory but have
poor locality. This limitation is reflected in the results for some
of this related work; for example, [27] is least effective for
Tigr (DNA sequence assembly) because of its poor temporal
locality in the coalesced TLB, and [8] notes that Canneal
(simulated annealing) has high TLB overheads because of its
“pseudo-random access patterns.”

With a segment-based approach, these techniques may be-
come unnecessary because TLBs can be eliminated.

Direct segments for big memory applications. Recent re-
search by Basu et al. [6] proposed adding support for a single
“direct segment” in hardware and the OS. Applications that
use a large amount of memory can be configured to place all
of their heap allocations in the direct segment, which is con-
tiguous in both virtual and physical memory. All accesses to
virtual addresses within the direct segment are then intercepted
and translated to physical addresses with a simple offset cal-
culation from the base address of the segment, bypassing the
TLB entirely.

Direct segments are a step in the right direction towards
more flexible virtual memory: they eliminate most of the need

to manage superpages, and they eliminate most of the address
translation overhead of TLBs. However, they still have some
limitations. First, the size of the segment must be decided be-
fore the application starts running. This is acceptable for cer-
tain applications that are configured by an administrator to use
most of the physical memory in the server, but it may not be
appropriate for all big-memory applications, especially those
that will contend for resources with other memory-intensive
applications on the same server, or for applications running in
a virtualized guest OS where it is difficult to know how much
physical memory is truly available. Second, direct segments
are also limited to storing heap data; they do not currently work
with mmap-ed files, which are another source of large virtual
memory allocations and TLB misses for some applications
(e.g., databases like MongoDB [23]).

Single address space systems. In systems such as
Opal [13], all applications share a single vitual address space.
Variable-width segments are the unit of virtual memory allo-
cation and protection, while virtual addresses are translated to
physical addresses at page granularity. It is possible to use a
virtually-indexed, virtually-tagged cache, because virtual ad-
dresses have the same translation, independent of the process.
Protection checks are process based and can be performed in
parallel with cache lookups; these checks are performed using
a Protection Lookaside Buffer [21], whose operation is similar
to a typical TLB, or by using page-group hardware like that
implemented in the HP PA-RISC architecture.

6. Conclusions

Technological advances have led to enormous changes in our
systems and applications over the last 50 years. However,
virtual memory mechanisms have evolved very little over that
time. To a large extent, today’s virtual memory architectures
are still based on the assumptions of small physical memories
and slow moving head disks.

We believe that a re-examination of virtual memory is war-
ranted in the face of today’s trends, such as enormous physi-
cal memories and rapidly evolving storage technologies (e.g.,
NVRAM and SSDs). As a basis for this reexamination, this pa-
per measures the memory behavior of set of modern desktop,
server, and data processing applications. Our measurements
reveal the wide range of modern applications with respect to
virtual memory usage, while our results show a number of op-
portunities for memory system optimization through both soft-
ware and hardware means – e.g., to re-examine segment-based
address translation with a decoupled finer-grained protection
mechanism.
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