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How to improve performance
of DB-driven web site?

Distributed in-memory caching
(e.g. memcached)
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Distributed In-Memory Caching
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* in-memory DHT;
very lightweight

* stores application
objects
(not part of DB)




Databases work hard to
provide transactional
consistency.

Existing application caches
violate these guarantees!




Consistency Properties

usual goal:
freshness: cache is up-to-date with database

our goal:
consistency: all accesses to cache and database
In a transaction see the same snapshot

Can’t guarantee both without blocking!




Consistency Properties

our goal:
consistency: all accesses to cache and database
In a transaction see the same snapshot

Can’t guarantee both without blocking!




Embracing Staleness

Run r/o transactions on previous snapshots
— avoids blocking
— improves cache utilization

Safe: stale data is already everywhere!

Allow application control over staleness




TxCache Anatomy




TxCache Anatomy

e Cache is a versioned DHT,
tagged by validity interval
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TxCache Anatomy

Cache is a versioned DHT,
tagged by validity interval

Database

— Patabase returns validity
~— interval with each query

Library assigns timestamp
to each transaction

TxCache Library Uses timestamp to request
data from cache & DB







