Transactional Caching
of Application Data
using Recent Snapshots

Dan R. K. Ports AustinT. Clements IreneY. Zhang

Samuel Madden Barbara Liskov

MIT CSAIL




How to improve performance
of DB-driven web site?

Distributed in-memory caching
(e.g. memcached)




Distributed In-Memory Caching

Database

>




Distributed In-Memory Caching

Cache Database

—




Distributed In-Memory Caching

Cache Database
= AN
\‘ ~

—

* in-memory DHT;
very lightweight

* stores application
objects
(not part of DB)




Databases work hard to
provide transactional
consistency.

Existing application caches
violate these guarantees!




Consistency Properties

usual goal:
freshness: cache is up-to-date with database

our goal:
consistency: all accesses to cache and database
In a transaction see the same snapshot

Can’t guarantee both without blocking!




Consistency Properties

our goal:
consistency: all accesses to cache and database
In a transaction see the same snapshot

Can’t guarantee both without blocking!




Embracing Staleness

Run r/o transactions on previous snapshots
— avoids blocking
— improves cache utilization

Safe: stale data is already everywhere!

Allow application control over staleness




TxCache Anatomy




TxCache Anatomy

e Cache is a versioned DHT,
tagged by validity interval

N

-

TxCache Library




TxCache Anatomy

(

SELECT * FROM users...

[...result...] . o
VALID FROM e (Cache is a versioned DHT,

t=50 TO t=53 tagged by validity interval

V
Cache Database .« yo
— e Database returns validity

~— interval with each query

TxCache Library




TxCache Anatomy

Cache is a versioned DHT,
tagged by validity interval

Database

— Patabase returns validity
~— interval with each query

Library assigns timestamp
to each transaction

TxCache Library Uses timestamp to request
data from cache & DB







