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Abstract
Application programmers increasingly prefer distributed stor-
age systems with strong consistency and distributed transac-
tions (e.g., Google’s Spanner) for their strong guarantees and
ease of use. Unfortunately, existing transactional storage sys-
tems are expensive to use – in part because they require costly
replication protocols, like Paxos, for fault tolerance. In this
paper, we present a new approach that makes transactional
storage systems more affordable: we eliminate consistency
from the replication protocol while still providing distributed
transactions with strong consistency to applications.

We present TAPIR – the Transactional Application Proto-
col for Inconsistent Replication – the first transaction protocol
to use a novel replication protocol, called inconsistent repli-
cation, that provides fault tolerance without consistency. By
enforcing strong consistency only in the transaction protocol,
TAPIR can commit transactions in a single round-trip and or-
der distributed transactions without centralized coordination.
We demonstrate the use of TAPIR in a transactional key-value
store, TAPIR-KV. Compared to conventional systems, TAPIR-
KV provides better latency and throughput.

1. Introduction
Distributed storage systems provide fault tolerance and avail-
ability for large-scale web applications. Increasingly, appli-
cation programmers prefer systems that support distributed
transactions with strong consistency to help them manage
application complexity and concurrency in a distributed en-
vironment. Several recent systems [4, 11, 17, 23] reflect this
trend, notably Google’s Spanner system [13], which guaran-
tees linearizable transaction ordering.1

For application programmers, distributed transactional
storage with strong consistency comes at a price. These sys-
tems commonly use replication for fault-tolerance, and repli-

∗ This document is an extended version of the paper by the same title that
appeared in SOSP 2015. An overview of the additional content is provided
in Section 1.1.
1 Spanner’s linearizable transaction ordering is also referred to as strict
serializable isolation or external consistency.

cation protocols with strong consistency, like Paxos, impose
a high performance cost, while more efficient, weak consis-
tency protocols fail to provide strong system guarantees.

Significant prior work has addressed improving the perfor-
mance of transactional storage systems – including systems
that optimize for read-only transactions [4, 13], more restric-
tive transaction models [2, 14, 23], or weaker consistency
guarantees [3, 34, 43]. However, none of these systems have
addressed both latency and throughput for general-purpose,
replicated, read-write transactions with strong consistency.

In this paper, we use a new approach to reduce the cost
of replicated, read-write transactions and make transactional
storage more affordable for programmers. Our key insight
is that existing transactional storage systems waste work
and performance by incorporating a distributed transaction
protocol and a replication protocol that both enforce strong
consistency. Instead, we show that it is possible to provide
distributed transactions with better performance and the same
transaction and consistency model using replication with no
consistency.

To demonstrate our approach, we designed TAPIR – the
Transactional Application Protocol for Inconsistent Replica-
tion. TAPIR uses a new replication technique, called incon-
sistent replication (IR), that provides fault tolerance without
consistency. Rather than an ordered operation log, IR presents
an unordered operation set to applications. Successful opera-
tions execute at a majority of the replicas and survive failures,
but replicas can execute them in any order. Thus, IR needs no
cross-replica coordination or designated leader for operation
processing. However, unlike eventual consistency, IR allows
applications to enforce higher-level invariants when needed.

Thus, despite IR’s weak consistency guarantees, TAPIR
provides linearizable read-write transactions and supports
globally-consistent reads across the database at a timestamp –
the same guarantees as Spanner. TAPIR efficiently leverages
IR to distribute read-write transactions in a single round-trip
and order transactions globally across partitions and replicas
with no centralized coordination.
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We implemented TAPIR in a new distributed transactional
key-value store called TAPIR-KV, which supports linearizable
transactions over a partitioned set of keys. Our experiments
found that TAPIR-KV had: (1) 50% lower commit latency
and (2) more than 3× better throughput compared to sys-
tems using conventional transaction protocols, including an
implementation of Spanner’s transaction protocol, and (3)
comparable performance to MongoDB [36] and Redis [40],
widely-used eventual consistency systems.

This paper makes the following contributions to the design
of distributed, replicated transaction systems:

• We define inconsistent replication, a new replication tech-
nique that provides fault tolerance without consistency.

• We design TAPIR, a new distributed transaction protocol
that provides strict serializable transactions using incon-
sistent replication for fault tolerance.

• We build and evaluate TAPIR-KV, a key-value store that
combines inconsistent replication and TAPIR to achieve
high-performance transactional storage.

1.1 Technical Report Overview
This technical report includes the following additions to our
paper:
1. A more detailed description of the IR view change proto-

col. (Section 3.2.2)
2. A description of the IR client recovery protocol. (Sec-

tion 3.2.3)
3. A full proof and TLA+ [27] specification for IR. (Sec-

tion 3.3 and Appendix A)
4. Additional pseudocode for TAPIR-EXEC-CONSENSUS,

which executes TAPIR’s Prepare operation, and TAPIR-
SYNC, which synchronizes replicas with missed IR opera-
tions and consensus results. (Section 5)

5. The complete coordinator recovery protocol for TAPIR.
(Section 5.2.3)

6. A full proof and TLA specification for TAPIR on IR.
(Section 5.3 and Appendix B)

7. Extensions to the TAPIR protocol for:
(a) Supporting read-only transactions at a consistent times-

tamp and Spanner-style linearizable read-only transac-
tions. (Section 6.1)

(b) Relaxing from linearizable transaction ordering to
serializable. (Section 6.2)

(c) Reducing the fast quorum size using synchronous disk
writes. (Section 6.3)

(d) Coping with very high clock skews. (Section 6.4)
8. A full latency and clock skew profile of our Google

Compute Engine testbed. (Section 7.1.1)

2. Over-Coordination in Transaction Systems
Replication protocols have become an important compo-
nent in distributed storage systems. Modern storage sys-
tems commonly partition data into shards for scalability and
then replicate each shard for fault-tolerance and availabil-
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Figure 1: A common architecture for distributed transactional
storage systems today. The distributed transaction protocol consists
of an atomic commitment protocol, commonly Two-Phase Commit
(2PC), and a concurrency control (CC) mechanism. This runs atop a
replication (R) protocol, like Paxos.

ity [4, 9, 13, 35]. To support transactions with strong con-
sistency, they must implement both a distributed transaction
protocol – to ensure atomicity and consistency for transac-
tions across shards – and a replication protocol – to ensure
transactions are not lost (provided that no more than half of
the replicas in each shard fail at once). As shown in Figure 1,
these systems typically place the transaction protocol, which
combines an atomic commitment protocol and a concurrency
control mechanism, on top of the replication protocol (al-
though alternative architectures have also occasionally been
proposed [35]).

Distributed transaction protocols assume the availability
of an ordered, fault-tolerant log. This ordered log abstraction
is easily and efficiently implemented with a spinning disk but
becomes more complicated and expensive with replication.
To enforce the serial ordering of log operations, transactional
storage systems must integrate a costly replication proto-
col with strong consistency (e.g., Paxos [28], Viewstamped
Replication [38] or virtual synchrony [7]) rather than a more
efficient, weak consistency protocol [25, 41].

The traditional log abstraction imposes a serious perfor-
mance penalty on replicated transactional storage systems,
because it enforces strict serial ordering using expensive dis-
tributed coordination in two places: the replication protocol
enforces a serial ordering of operations across replicas in each
shard, while the distributed transaction protocol enforces a
serial ordering of transactions across shards. This redundancy
impairs latency and throughput for systems that integrate both
protocols. The replication protocol must coordinate across
replicas on every operation to enforce strong consistency; as a
result, it takes at least two round-trips to order any read-write
transaction. Further, to efficiently order operations, these pro-
tocols typically rely on a replica leader, which can introduce
a throughput bottleneck to the system.

As an example, Figure 2 shows the redundant coordination
required for a single read-write transaction in a system like
Spanner. Within the transaction, Read operations go to the
shard leaders (which may be in other datacenters), because
the operations must be ordered across replicas, even though
they are not replicated. To Prepare a transaction for commit,
the transaction protocol must coordinate transaction ordering

2



Client
Zone 1 Zone 2 Zone 3

Shard
A

Shard
B

(leader)

Shard
C

Shard
A

(leader)

Shard
B

Shard
C

Shard
A

Shard
B

Shard
C

(leader)

e
xe

c
u
tio

n

BEGINBEGIN

READ(a)

WRITE(b)

READ(c)

p
re

p
a
re

PREPARE(A)

PREPARE(B)

PREPARE(C)

c
o
m

m
it

COMMIT(A)

COMMIT(B)

COMMIT(C)

Figure 2: Example read-write transaction using two-phase commit,
viewstamped replication and strict two-phase locking. Availability
zones represent either a cluster, datacenter or geographic region.
Each shard holds a partition of the data stored in the system and
has replicas in each zone for fault tolerance. The red, dashed lines
represent redundant coordination in the replication layer.

across shards, and then the replication protocol coordinates
the Prepare operation ordering across replicas. As a result, it
takes at least two round-trips to commit the transaction.

In the TAPIR and IR design, we eliminate the redundancy
of strict serial ordering over the two layers and its associated
performance costs. IR is the first replication protocol to
provide pure fault tolerance without consistency. Instead
of an ordered operation log, IR presents the abstraction of
an unordered operation set. Existing transaction protocols
cannot efficiently use IR, so TAPIR is the first transaction
protocol designed to provide linearizable transactions on IR.

3. Inconsistent Replication
Inconsistent replication (IR) is an efficient replication proto-
col designed to be used with a higher-level protocol, like a
distributed transaction protocol. IR provides fault-tolerance
without enforcing any consistency guarantees of its own. In-
stead, it allows the higher-level protocol, which we refer to
as the application protocol, to decide the outcome of con-
flicting operations and recover those decisions through IR’s
fault-tolerant, unordered operation set.

3.1 IR Overview
Application protocols invoke operations through IR in one of
two modes:

• inconsistent – operations can execute in any order. Suc-
cessful operations persist across failures.

Client Interface
InvokeInconsistent(op)
InvokeConsensus(op, decide(results))→ result
Replica Upcalls
ExecInconsistent(op) ExecConsensus(op)→ result
Sync(R) Merge(d,u)→ record

Client State
• client id - unique identifier for the client
• operation counter - # of sent operations

Replica State
• state - current replica state; either NORMAL or VIEW-CHANGING
• record - unordered set of operations and consensus results

Figure 3: Summary of IR interfaces and client/replica state.

• consensus – operations execute in any order, but return a
single consensus result. Successful operations and their
consensus results persist across failures.

inconsistent operations are similar to operations in weak con-
sistency replication protocols: they can execute in different or-
ders at each replica, and the application protocol must resolve
conflicts afterwards. In contrast, consensus operations allow
the application protocol to decide the outcome of conflicts
(by executing a decide function specified by the application
protocol) and recover that decision afterwards by ensuring
that the chosen result persists across failures as the consensus
result. In this way, consensus operations can serve as the basic
building block for the higher-level guarantees of application
protocols. For example, a distributed transaction protocol can
decide which of two conflicting transactions will commit, and
IR will ensure that decision persists across failures.

3.1.1 IR Application Protocol Interface

Application 
Protocol Client

IR Client

InvokeInconsistent

InvokeConsensus decide

Application 
Protocol Server

IR Replica

ExecInconsistent

ExecConsensus
Merge

Sync

Client Node Server Node

Figure 4: IR Call Flow.

Figure 3 summarizes the IR interfaces at clients and
replicas. Application protocols invoke operations through
a client-side IR library using InvokeInconsistent and
InvokeConsensus, and then IR runs operations using the
ExecInconsistent and ExecConsensus upcalls at the repli-
cas.

If replicas return conflicting/non-matching results for a
consensus operation, IR allows the application protocol to de-
cide the operation’s outcome by invoking the decide function
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– passed in by the application protocol to InvokeConsensus –
in the client-side library. The decide function takes the list of
returned results (the candidate results) and returns a single re-
sult, which IR ensures will persist as the consensus result. The
application protocol can later recover the consensus result to
find out its decision to conflicting operations.

Some replicas may miss operations or need to reconcile
their state if the consensus result chosen by the application
protocol does not match their result. To ensure that IR replicas
eventually converge, they periodically synchronize. Similar
to eventual consistency, IR relies on the application protocol
to reconcile inconsistent replicas. On synchronization, a
single IR node first upcalls into the application protocol with
Merge, which takes records from inconsistent replicas and
merges them into a master record of successful operations
and consensus results. Then, IR upcalls into the application
protocol with Sync at each replica. Sync takes the master
record and reconciles application protocol state to make the
replica consistent with the chosen consensus results.

3.1.2 IR Guarantees
We define a successful operation to be one that returns to
the application protocol. The operation set of any IR group
includes all successful operations. We define an operation X
as being visible to an operation Y if one of the replicas exe-
cuting Y has previously executed X . IR ensures the following
properties for the operation set:
P1. [Fault tolerance] At any time, every operation in the

operation set is in the record of at least one replica in any
quorum of f +1 non-failed replicas.

P2. [Visibility] For any two operations in the operation set,
at least one is visible to the other.

P3. [Consensus results] At any time, the result returned by
a successful consensus operation is in the record of at
least one replica in any quorum. The only exception is
if the consensus result has been explicitly modified by
the application protocol through Merge, after which the
outcome of Merge will be recorded instead.

IR ensures guarantees are met for up to f simultaneous fail-
ures out of 2 f +1 replicas2 and any number of client failures.
Replicas must fail by crashing, without Byzantine behavior.
We assume an asynchronous network where messages can be
lost or delivered out of order. IR does not require synchronous
disk writesduring operation execution, ensuring guarantees
are maintained even if clients or replicas lose state on failure.
IR makes progress (operations will eventually become suc-
cessful) provided that messages that are repeatedly resent are
eventually delivered before the recipients time out.

2 Using more than 2 f + 1 replicas for f failures is possible but illogical
because it requires a larger quorum size with no additional benefit.

3.1.3 Application Protocol Example: Fault-Tolerant
Lock Server

As an example, we show how to build a simple lock server
using IR. The lock server’s guarantee is mutual exclusion:
a lock cannot be held by two clients at once. We replicate
Lock as a consensus operation and Unlock as an inconsistent

operation. A client application acquires the lock only if Lock
successfully returns OK as a consensus result.

Since operations can run in any order at the replicas, clients
use unique ids (e.g., a tuple of client id and a sequence num-
ber) to identify corresponding Lock and Unlock operations
and only call Unlock if Lock first succeeds. Replicas will
therefore be able to later match up Lock and Unlock opera-
tions, regardless of order, and determine the lock’s status.

Note that inconsistent operations are not commutative
because they can have side-effects that affect the outcome
of consensus operations. If an Unlock and Lock execute in
different orders at different replicas, some replicas might
have the lock free, while others might not. If replicas return
different results to Lock, IR invokes the lock server’s decide
function, which returns OK if f +1 replicas returned OK and
NO otherwise. IR only invokes Merge and Sync on recovery,
so we defer their discussion until Section 3.2.2.

IR’s guarantees ensure correctness for our lock server.
P1 ensures that held locks are persistent: a Lock operation
persists at one or more replicas in any quorum. P2 ensures
mutual exclusion: for any two conflicting Lock operations,
one is visible to the other in any quorum; therefore, IR
will never receive f +1 matching OK results, precluding the
decide function from returning OK. P3 ensures that once the
client application receives OK from a Lock, the result will not
change. The lock server’s Merge function will not change it,
as we will show later, and IR ensures that the OK will persist
in the record of at least one replica out of any quorum.

3.2 IR Protocol
Figure 3 shows the IR state at the clients and replicas. Each
IR client keeps an operation counter, which, combined with
the client id, uniquely identifies operations. Each replica
keeps an unordered record of executed operations and results
for consensus operations. Replicas add inconsistent opera-
tions to their record as TENTATIVE and then mark them as
FINALIZED once they execute. consensus operations are first
marked TENTATIVE with the result of locally executing the
operation, then FINALIZED once the record has the consensus
result.

IR uses four sub-protocols – operation processing, replica
recovery/synchronization, client recovery, and group mem-
bership change. We discuss the first three here; the last is
identical to that of Viewstamped Replication [33].

3.2.1 Operation Processing
We begin by describing IR’s normal-case inconsistent opera-
tion processing protocol without failures:
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1. The client sends 〈PROPOSE, id, op〉 to all replicas, where
id is the operation id and op is the operation.

2. Each replica writes id and op to its record as TENTATIVE,
then responds to the client with 〈REPLY, id〉.

3. Once the client receives f + 1 responses from replicas
(retrying if necessary), it returns to the application protocol
and asynchronously sends 〈FINALIZE, id〉 to all replicas.
(FINALIZE can also be piggy-backed on the client’s next
message.)

4. On FINALIZE, replicas upcall into the application protocol
with ExecInconsistent(op) and mark op as FINALIZED.

Due to the lack of consistency, IR can successfully complete
an inconsistent operation with a single round-trip to f + 1
replicas and no coordination across replicas. If the IR client
does not receive a response to its PREPARE from f + 1
replicas, it will retry until it does.

Next, we describe the normal-case consensus operation
processing protocol, which has both a fast path and a slow
path. IR uses the fast path when it can achieve a fast quorum
of d 3

2 f e+ 1 replicas that return matching results to the
operation. Similar to Fast Paxos and Speculative Paxos [39],
IR requires a fast quorum to ensure that a majority of the
replicas in any quorum agrees to the consensus result. This
quorum size is necessary to execute operations in a single
round trip when using a replica group of size 2 f + 1 [30];
an alternative would be to use quorums of size 2 f + 1 in a
system with 3 f +1 replicas.

When IR cannot achieve a fast quorum, either because
replicas did not return enough matching results (e.g., if there
are conflicting concurrent operations) or because not enough
replicas responded (e.g., if more than f

2 are down), then it
must take the slow path. We describe both below:

1. The client sends 〈PROPOSE, id, op〉 to all replicas.
2. Each replica calls into the application protocol with

ExecConsensus(op) and writes id, op, and result to its
record as TENTATIVE. The replica responds to the client
with 〈REPLY, id, result〉.

3. If the client receives at least d 3
2 f e+ 1 matching results

(within a timeout), then it takes the fast path: the client re-
turns result to the application protocol and asynchronously
sends 〈FINALIZE, id, result〉 to all replicas.

4. Otherwise, the client takes the slow path: once it re-
ceives f +1 responses (retrying if necessary), then it sends
〈FINALIZE, id, result〉 to all replicas, where result is ob-
tained from executing the decide function.

5. On receiving FINALIZE, each replica marks the operation
as FINALIZED, updating its record if the received result is
different, and sends 〈CONFIRM, id〉 to the client.

6. On the slow path, the client returns result to the application
protocol once it has received f +1 CONFIRM responses.

The fast path for consensus operations takes a single round
trip to d 3

2 f e+ 1 replicas, while the slow path requires two
round-trips to at least f + 1 replicas. Note that IR replicas
can execute operations in different orders and still return

matching responses, so IR can use the fast path without a
strict serial ordering of operations across replicas. IR can also
run the fast path and slow path in parallel as an optimization.

3.2.2 Replica Recovery and Synchronization
IR uses a single protocol for recovering failed replicas and
running periodic synchronizations. On recovery, we must
ensure that the failed replica applies all operations it may
have lost or missed in the operation set, so we use the same
protocol to periodically bring all replicas up-to-date.

To handle recovery and synchronization, we introduce
view changes into the IR protocol, similar to Viewstamped
Replication (VR) [38]. These maintain IR’s correctness
guarantees across failures. Each IR view change is run by a
leader; leaders coordinate only view changes, not operation
processing. During a view change, the leader has just one
task: to make at least f +1 replicas up-to-date (i.e., they have
applied all operations in the operation set) and consistent
with each other (i.e., they have applied the same consensus
results). IR view changes require a leader because polling
inconsistent replicas can lead to conflicting sets of operations
and consensus results. Thus, the leader must decide on a
master record that replicas can then use to synchronize with
each other.

To support view changes, each IR replica maintains a
current view, which consists of the identity of the leader, a list
of the replicas in the group, and a (monotonically increasing)
view number uniquely identifying the view. Each IR replica
can be in one of the three states: NORMAL, VIEW-CHANGING
or RECOVERING. Replicas process operations only in the
NORMAL state. We make four additions to IR’s operation
processing protocol:
1. IR replicas send their current view number in every re-

sponse to clients. For an operation to be considered suc-
cessful, the IR client must receive responses with matching
view numbers. For consensus operations, the view num-
bers in REPLY and CONFIRM must match as well. If a
client receives responses with different view numbers, it
notifies the replicas in the older view.

2. On receiving a message with a view number that is
higher than its current view, a replica moves to the VIEW-
CHANGING state and requests the master record from any
replica in the higher view. It replaces its own record with
the master record and upcalls into the application protocol
with Sync before returning to NORMAL state.

3. On PROPOSE, each replica first checks whether the opera-
tion was already FINALIZED by a view change. If so, the
replica responds with 〈REPLY, id, FINALIZED, v, [result]〉,
where v is the replica’s current view number and result is
the consensus result for consensus operations.

4. If the client receives REPLY with a FINALIZED status
for consensus operations, it sends 〈FINALIZE, id, result〉
with the received result and waits until it receives f + 1
CONFIRM responses in the same view before returning
result to the application protocol.
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IR’s view change protocol is similar to VR’s. Each view
change is coordinated by a leader, which is unique per view
and deterministically chosen. There are three key differences.
First, in IR the leader merges records during a view change
rather than simply taking the longest log from the latest view.
The reason for this is that, with inconsistent replicas and
unordered operations, any single record could be incomplete.
Second, in VR, the leader is used to process operations in
the normal case, but IR uses the leader only for performing
view changes. Finally, on recovery, an IR replica performs a
view change, rather than simply interrogating a single replica.
This makes sure that the recovering replica either receives
all operations it might have sent a reply for, or prevents them
from completing.

The full view change protocol follows:
1. A replica that notices the need for a view change ad-

vances its view number and sets its status to either VIEW-
CHANGING or RECOVERING – if the replica just started a
recovery. A replica notices the need for a view change ei-
ther based on a timeout, because it is a recovering replica,
or because it received a DO-VIEW-CHANGE message for
a view with a larger number than its own current view-
number. It records the new view number to disk.

2. The replica then sends a 〈DO-VIEW-CHANGE, rec, v, v′〉
message to the new leader, except when the sending replica
is a recovering replica. It also sends the same message,
without the rec field, to the other replicas. Here v identifies
the new view, v′ is the latest view in which the replica’s
status was NORMAL, and rec is its unordered record of
executed operations.

3. Once the new leader receives f records from f other
replicas, it considers all records with the highest value
of v′. It uses a a merge function, shown in Figure 5, to join
these into a master record R.

4. The leader updates its view number to vnew, where vnew
is the view number from the received messages, and
its status to NORMAL. It then informs the other repli-
cas of the completion of the view change by sending a
〈START-VIEW, vnew, R〉, where R is the master record.

5. When a replica receives a START-VIEW message with vnew
greater than or equal to its current view number, it replaces
its own record with R and upcalls into the application
protocol with Sync.

6. Once Sync is complete, the replica updates its current
view number to vnew, records this to disk, and enters the
NORMAL state.

Merging Records. The IR-MERGE-RECORDS function is
used by the new leader to merge the set of received records.
This function is shown in Figure 5. IR-MERGE-RECORDS
starts by adding all inconsistent operations and consensus

operations marked FINALIZED to R and calling Sync into the
application protocol. These operations must persist in the next
view, so we first apply them to the leader, ensuring that they
are visible to any operations for which the leader will decide

IR-MERGE-RECORDS(records)

1 R,d,u = /0
2 for ∀op ∈ records
3 if op. type = = inconsistent
4 R = R∪op
5 elseif op. type = = consensus and op. status = = FINALIZED
6 R = R∪op
7 elseif op. type = = consensus and op. status = = TENTATIVE

8 if op. result in more than f
2 +1 records

9 d = d∪op
10 else
11 u = u∪op
12 Sync(R)
13 return R∪Merge(d,u)

Figure 5: Merge function for the master record. We merge all records
from replicas in the latest view, which is always a strict super set of
the records from replicas in lower views.

consensus results next in Merge. As an example, Sync for the
lock server matches up all corresponding Lock and Unlock

by id; if there are unmatched Locks, it sets locked = TRUE;
otherwise, locked = FALSE.

IR asks the application protocol to decide the consensus
result for the remaining TENTATIVE consensus operations,
which either: (1) have a matching result, which we define as
the majority result, in at least d f

2 e+1 records or (2) do not.
IR places these operations in d and u, respectively, and calls
Merge(d,u) into the application protocol, which must return
a consensus result for every operation in d and u.

IR must rely on the application protocol to decide consen-
sus results for several reasons. For operations in d, IR cannot
tell whether the operation succeeded with the majority result
on the fast path, or whether it took the slow path and the appli-
cation protocol decide’d a different result that was later lost.
In some cases, it is not safe for IR to keep the majority result
because it would violate application protocol invariants. For
example, in the lock server, OK could be the majority result if
only d f

2 e+1 replicas replied OK, but the other replicas might
have accepted a conflicting lock request. However, it is also
possible that the other replicas did respond OK, in which case
OK would have been a successful response on the fast-path.

The need to resolve this ambiguity is the reason for the
caveat in IR’s consensus property (P3) that consensus results
can be changed in Merge. Fortunately, the application protocol
can ensure that successful consensus results do not change
in Merge, simply by maintaining the majority results in d on
Merge unless they violate invariants. The merge function for
the lock server, therefore, does not change a majority response
of OK, unless another client holds the lock. In that case, the
operation in d could not have returned a successful consensus
result to the client (either through the fast or the slow path),
so it is safe to change its result.

For operations in u, IR needs to invoke decide but cannot
without at least f + 1 results, so uses Merge instead. The
application protocol can decide consensus results in Merge

without f +1 replica results and still preserve IR’s visibility

6



property because IR has already applied all of the operations
in R and d, which are the only operations definitely in the
operation set, at this point.

The leader adds all operations returned from Merge and
their consensus results to R, then sends R to the other replicas,
which call Sync(R) into the application protocol and replace
their own records with R. The view change is complete
after at least f + 1 replicas have exchanged and merged
records and SYNC’d with the master record. A replica can
only process requests in the new view (in the NORMAL state)
after it completes the view change protocol. At this point, any
recovering replicas can also be considered recovered. If the
leader of the view change does not finish the view change by
some timeout, the group will elect a new leader to complete
the protocol by starting a new view change with a larger view
number.

3.2.3 Client Recovery
We assume that clients can lose some or all of their state
on failure. On recovery, a client must ensure that: (1) it
recovers its latest operation counter, and (2) any operations
that it started but did not finish are FINALIZED. To do so,
the recovering client requests the id for its latest operation
from a majority of the replicas. This poll gets the client the
largest id that the group has seen from it, so the client takes
the largest returned id and increments it to use as its new
operation counter.

A view change finalizes all TENTATIVE operation on the
next synchronization, so the client does not need to finish
previously started operations and IR does not have to worry
about clients failing to recover after failure.

3.3 Correctness
For correctness, we show that IR provides the following
properties for operations in the operation set:
P1. [Fault tolerance] At any time, every operation in the

operation set is in the record of at least one replica in any
quorum of f +1 non-failed replicas.

P2. [Visibility] For any two consensus operations in the
operation set, at least one is visible to the other.

P3. [Consensus results] At any time, every successful con-
sensus result is in the record of at least one replica in any
quorum. Again, the only exception being that the applica-
tion protocol modified the result through Merge.

P4. [Eventual Consistency] Given a sufficiently long period
of synchrony, any operation in the operation set (and
its consensus result, if applicable) will eventually have
executed or Synced at every non-faulty replica.
In Appendix A, we give a TLA+ specification, which we

have model-checked. In addition, we have added an eventual
consistency property, which is not necessary for correctness,
but is useful for application protocols. As this is a liveness
property, it holds only during periods of synchrony, when
messages that are repeatedly resent are eventually delivered
before the recipient times out [18].

We begin our proof of correctness by defining the follow-
ing terms:
D1. An operation is applied at a replica if that replica has

executed (through ExecInconsistent or ExecConsensus)
or synchronized (through Sync) the operation.

D2. An operation X is visible to a consensus operation Y if
one of the replicas providing candidate results for Y has
previously applied X .

D3. The persistent operation set is the set of operations
applied at at least one replica in any quorum of f + 1
non-failed replicas.
We first prove a number of invariants about the persistent

operation set. Given these invariants, we can show that the IR
properties hold.

I1. The size of persistent operation set is monotomically
increasing.

I1 holds at every replica during normal operation because
replicas never roll back executed operations. I1 also hold
across view changes. The leader merges all operations from
the records of f +1 non-faulty replicas into the master record,
so by quorum intersection, the master record contains every
operation in the persistent operation set. Then, at least f +1
non-faulty replicas replace their record with the master record
and applies the master record (through Sync), so any persistent
operations before the view change will continue to persist
after the view change.

I2. All operations in the persistent operation set are visible
to any consensus operation added to the set.

consensus operations are added to the persistent set by
either: (1) executing at at least a quorum of f + 1 replicas
or (2) being merged by the leader into the master record. In
case 1, by definition, every operation already in the persistent
operation set must be applied at at least 1 replica out of the
quorum and will be visible to the added consensus operation.
In case 2, the leader applies all operations in the persistent
operation set (through Sync) before running Merge, ensuring
that every operation already in the persistent operation set
is visible to operations added to the persistent operation set
through Merge.

I3. The result of any consensus operation in the persistent
operation set is either the successful consensus result or the
Merge result.

The result of any consensus operations in the persistent
set is either: (1) a matching result from executing the opera-
tion (through ExecConsensus) at a fast quorum of d 3

2 f e+1
replicas, (2) a result from executing the application protocol-
specific decide function in the client-side library, or (3) a re-
sult from executing Merge at the leader during a view change.
In case 1, the matching result will be both the result in the
persistent operation set and the successful consensus result.
The same holds for the result returned from decide in case 2.
During a view change, the leader may get an operation that
has already fulfilled either case 1 or case 2, and change the
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result in Merge. The result from Merge will be in the record
and applied to at least f +1 replicas. Thus, either the success-
ful consensus result or, if the application protocol changed
the result in Merge, the Merge result, will continue to persist
in the persistent operation set.

I4. All operations and consensus results in the persistent
operation set in all previous view must be applied at a replica
before it executes any operations in the new view.

IR clients require that all responses come from replicas in
the same view. Thus, if any replica is in view v and at least
f +1 other replicas are in a higher view V > v, that replica
cannot successfully complete an operation until it joins the
higher view. In order to join the higher view, the replica in the
lower view must obtain the master record from a replica in
the higher view, and Sync with that master record. The master
record contains all operations in the persistent operation set,
so the replica will apply all operations from the persistent
operation set before processing operations in the new view.

Given these four invariants for the persistent operation
set, we can show that the four properties of IR hold. Any
operation in the operation set must have executed at (and
received responses from) f + 1 of 2 f + 1 replicas, so by
quorum intersection, all operations in the operation set must
be in the persistent operation set. Thus, I1 directly implies P1,
as any operation in the persistent operation set will continue
to be in the set. I1 and I2 imply P2 because, for any consensus

operation X , all operations added to the persistent operation
set before X are visible to X and X will be visible to all
operations added to the persistent operation set after it. I1 and
I3 implies P3 because either the successful consensus result
will remain in the persistent operation set or the Merge result
will. I4 implies P4 because, if all replicas are non-faulty for
long enough, they will eventually all attempt to participate
in processing operations, which will cause them to Sync all
operations in the persistent operation set.

4. Building Atop IR
IR obtains performance benefits because it offers weak con-
sistency guarantees and relies on application protocols to
resolve inconsistencies, similar to eventual consistency proto-
cols such as Dynamo [15] and Bayou [44]. However, unlike
eventual consistency systems, which expect applications to
resolve conflicts after they happen, IR allows application pro-
tocols to prevent conflicts before they happen. Using consen-

sus operations, application protocols can enforce higher-level
guarantees (e.g., TAPIR’s linearizable transaction ordering)
across replicas despite IR’s weak consistency.

However, building strong guarantees on IR requires care-
ful application protocol design. IR cannot support certain
application protocol invariants. Moreover, if misapplied, IR
can even provide applications with worse performance than a
strongly consistent replication protocol. In this section, we
discuss the properties that application protocols need to have
to correctly and efficiently enforce higher-level guarantees

with IR and TAPIR’s techniques for efficiently providing
linearizable transactions.

4.1 IR Application Protocol Requirement: Invariant
checks must be performed pairwise.

Application protocols can enforce certain types of invariants
with IR, but not others. IR guarantees that in any pair of con-
sensus operations, at least one will be visible to the other
(P2). Thus, IR readily supports invariants that can be safely
checked by examining pairs of operations for conflicts. For
example, our lock server example can enforce mutual exclu-
sion. However, application protocols cannot check invariants
that require the entire history, because each IR replica may
have an incomplete history of operations. For example, track-
ing bank account balances and allowing withdrawals only
if the balance remains positive is problematic because the
invariant check must consider the entire history of deposits
and withdrawals.

Despite this seemingly restrictive limitation, application
protocols can still use IR to enforce useful invariants, includ-
ing lock-based concurrency control, like Strict Two-Phase
Locking (S2PL). As a result, distributed transaction protocols
like Spanner [13] or Replicated Commit [35] would work
with IR. IR can also support optimistic concurrency control
(OCC) [24] because OCC checks are pairwise as well: each
committing transaction is checked against every previously
committed transaction, so consensus operations suffice to en-
sure that at least one replica sees any conflicting transaction
and aborts the transaction being checked.

4.2 IR Application Protocol Requirement: Application
protocols must be able to change consensus operation
results.

Inconsistent replicas could execute consensus operations with
one result and later find the group agreed to a different
consensus result. For example, if the group in our lock server
agrees to reject a Lock operation that one replica accepted,
the replica must later free the lock, and vice versa. As noted
above, the group as a whole continues to enforce mutual
exclusion, so these temporary inconsistencies are tolerable
and are always resolved by the end of synchronization.

In TAPIR, we take the same approach with distributed
transaction protocols. 2PC-based protocols are always pre-
pared to abort transactions, so they can easily accommodate
a Prepare result changing from PREPARE-OK to ABORT. If
ABORT changes to PREPARE-OK, it might temporarily cause a
conflict at the replica, which can be correctly resolved because
the group as a whole could not have agreed to PREPARE-OK
for two conflicting transactions.

Changing Prepare results does sometimes cause unneces-
sary aborts. To reduce these, TAPIR introduces two Prepare

results in addition to PREPARE-OK and ABORT: ABSTAIN
and RETRY. ABSTAIN helps TAPIR distinguish between con-
flicts with committed transactions, which will not abort, and
conflicts with prepared transactions, which may later abort.
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Replicas return RETRY if the transaction has a chance of
committing later. The client can retry the Prepare without
re-executing the transaction.

4.3 IR Performance Principle: Application protocols
should not expect operations to execute in the same
order.

To efficiently achieve agreement on consensus results, appli-
cation protocols should not rely on operation ordering for
application ordering. For example, many transaction proto-
cols [4, 20, 23] use Paxos operation ordering to determine
transaction ordering. They would perform worse with IR
because replicas are unlikely to agree on which transaction
should be next in the transaction ordering.

In TAPIR, we use optimistic timestamp ordering to ensure
that replicas agree on a single transaction ordering despite
executing operations in different orders. Like Spanner [13],
every committed transaction has a timestamp, and committed
transaction timestamps reflect a linearizable ordering. How-
ever, TAPIR clients, not servers, propose a timestamp for
their transaction; thus, if TAPIR replicas agree to commit
a transaction, they have all agreed to the same transaction
ordering.

TAPIR replicas use these timestamps to order their trans-
action logs and multi-versioned stores. Therefore, replicas
can execute Commit in different orders but still converge to
the same application state. TAPIR leverages loosely synchro-
nized clocks at the clients for picking transaction timestamps,
which improves performance but is not necessary for correct-
ness.

4.4 IR Performance Principle: Application protocols
should use cheaper inconsistent operations whenever
possible rather than consensus operations.

By concentrating invariant checks in a few operations, applica-
tion protocols can reduce consensus operations and improve
their performance. For example, in a transaction protocol,
any operation that decides transaction ordering must be a
consensus operation to ensure that replicas agree to the same
transaction ordering. For locking-based transaction protocols,
this is any operation that acquires a lock. Thus, every Read

and Write must be replicated as a consensus operation.
TAPIR improves on this by using optimistic transaction

ordering and OCC, which reduces consensus operations by
concentrating all ordering decisions into a single set of vali-
dation checks at the proposed transaction timestamp. These
checks execute in Prepare, which is TAPIR’s only consen-

sus operation. Commit and Abort are inconsistent operations,
while Read and Write are not replicated.

5. TAPIR
This section details TAPIR – the Transactional Application
Protocol for Inconsistent Replication. As noted, TAPIR is
designed to efficiently leverage IR’s weak guarantees to
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Figure 6: Example read-write transaction in TAPIR. TAPIR executes
the same transaction pictured in Figure 2 with less redundant
coordination. Reads go to the closest replica and Prepare takes a
single round-trip to all replicas in all shards.

provide high-performance linearizable transactions. Using
IR, TAPIR can order a transaction in a single round-trip to
all replicas in all participant shards without any centralized
coordination.

TAPIR is designed to be layered atop IR in a replicated,
transactional storage system. Together, TAPIR and IR elim-
inate the redundancy in the replicated transactional system,
as shown in Figure 2. As a comparison, Figure 6 shows the
coordination required for the same read-write transaction in
TAPIR with the following benefits: (1) TAPIR does not have
any leaders or centralized coordination, (2) TAPIR Reads al-
ways go to the closest replica, and (3) TAPIR Commit takes a
single round-trip to the participants in the common case.

5.1 Overview
TAPIR is designed to provide distributed transactions for
a scalable storage architecture. This architecture partitions
data into shards and replicates each shard across a set of
storage servers for availability and fault tolerance. Clients
are front-end application servers, located in the same or
another datacenter as the storage servers, not end-hosts or
user machines. They have access to a directory of storage
servers using a service like Chubby [8] or ZooKeeper [21] and
directly map data to servers using a technique like consistent
hashing [22].

TAPIR provides a general storage and transaction interface
for applications via a client-side library. Note that TAPIR is
the application protocol for IR; applications using TAPIR do
not interact with IR directly.
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Client Interface
Begin() Read(key)→object Abort()
Commit()→TRUE/FALSE Write(key,object)

Client State
• client id - unique client identifier
• transaction - ongoing transaction id, read set, write set

Replica Interface
Read(key)→object,version Commit(txn,timestamp)

Abort(txn,timestamp)
Prepare(txn,timestamp)→PREPARE-OK/ABSTAIN/ABORT/(RETRY, t)

Replica State
• prepared list - list of transactions replica is prepared to commit
• transaction log - log of committed and aborted transactions
• store - versioned data store

Figure 7: Summary of TAPIR interfaces and client and replica state.

A TAPIR application Begins a transaction, then executes
Reads and Writes during the transaction’s execution period.
During this period, the application can Abort the transaction.
Once it finishes execution, the application Commits the trans-
action. Once the application calls Commit, it can no longer
abort the transaction. The 2PC protocol will run to comple-
tion, committing or aborting the transaction based entirely
on the decision of the participants. As a result, TAPIR’s 2PC
coordinators cannot make commit or abort decisions and do
not have to be fault-tolerant. This property allows TAPIR to
use clients as 2PC coordinators, as in MDCC [23], to reduce
the number of round-trips to storage servers.

TAPIR provides the traditional ACID guarantees with the
strictest level of isolation: strict serializability (or linearizabil-
ity) of committed transactions.

5.2 Protocol
TAPIR provides transaction guarantees using a transaction
processing protocol, IR functions, and a coordinator recovery
protocol.

Figure 7 shows TAPIR’s interfaces and state at clients and
replicas. Replicas keep committed and aborted transactions
in a transaction log in timestamp order; they also maintain a
multi-versioned data store, where each version of an object is
identified by the timestamp of the transaction that wrote the
version. TAPIR replicas serve reads from the versioned data
store and maintain the transaction log for synchronization and
checkpointing. Like other 2PC-based protocols, each TAPIR
replica also maintains a prepared list of transactions that it
has agreed to commit.

Each TAPIR client supports one ongoing transaction at a
time. In addition to its client id, the client stores the state for
the ongoing transaction, including the transaction id and read
and write sets. The transaction id must be unique, so the client
uses a tuple of its client id and transaction counter, similar
to IR. TAPIR does not require synchronous disk writes at the
client or the replicas, as clients do not have to be fault-tolerant
and replicas use IR.

TAPIR-EXEC-CONSENSUS(op)

1 txn = op.args. txn
2 timestamp = op.args. timestamp
3 if txn. id ∈ txn-log
4 if txn− log[txn. id]. status = = COMMITTED
5 return PREPARE-OK
6 else
7 return ABORT
8 elseif txn. id ∈ prepared-list
9 return PREPARE-OK

10 else
11 return TAPIR-OCC-CHECK(txn, timestamp)

Figure 8: Since Prepare is TAPIR’s only consensus operations,
TAPIR-EXEC-CONSENSUS simply runs TAPIR’s prepare algorithm
at replicas.

5.2.1 Transaction Processing
We begin with TAPIR’s protocol for executing transactions.
1. For Write(key, object), the client buffers key and object in

the write set until commit and returns immediately.
2. For Read(key), if key is in the transaction’s write set, the

client returns object from the write set. If the transaction
has already read key, it returns a cached copy. Otherwise,
the client sends Read(key) to the replica.

3. On receiving Read, the replica returns object and version,
where object is the latest version of key and version is the
timestamp of the transaction that wrote that version.

4. On response, the client puts (key, version) into the transac-
tion’s read set and returns object to the application.
Once the application calls Commit or Abort, the execution

phase finishes. To commit, the TAPIR client coordinates
across all participants – the shards that are responsible for
the keys in the read or write set – to find a single timestamp,
consistent with the strict serial order of transactions, to assign
the transaction’s reads and writes, as follows:
1. The TAPIR client selects a proposed timestamp. Proposed

timestamps must be unique, so clients use a tuple of their
local time and their client id.

2. The TAPIR client invokes Prepare(txn, timestamp) as an
IR consensus operation, where timestamp is the proposed
timestamp and txn includes the transaction id (txn. id)
and the transaction read (txn.read set) and write sets
(txn.write set). The client invokes Prepare on all partici-
pants through IR as a consensus operations.

3. Each TAPIR replica that receives Prepare (invoked by IR
through ExecConcensus) first checks its transaction log for
txn. id. If found, it returns PREPARE-OK if the transaction
committed or ABORT if the transaction aborted.

4. Otherwise, the replica checks if txn. id is already in its
prepared list. If found, it returns PREPARE-OK.

5. Otherwise, the replica runs TAPIR’s OCC validation
checks, which check for conflicts with the transaction’s
read and write sets at timestamp, shown in Figure 9.

6. Once the TAPIR client receives results from all shards, the
client sends Commit(txn, timestamp) if all shards replied
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TAPIR-OCC-CHECK(txn, timestamp)

1 for ∀key,version ∈ txn. read-set
2 if version < store[key]. latest-version
3 return ABORT
4 elseif version < MIN(prepared-writes[key])
5 return ABSTAIN
6 for ∀key ∈ txn.write-set
7 if timestamp < MAX(PREPARED-READS(key))
8 return RETRY, MAX(PREPARED-READS(key))
9 elseif timestamp < store[key]. latestVersion

10 return RETRY, store[key]. latestVersion
11 prepared-list[txn. id] = timestamp
12 return PREPARE-OK

Figure 9: Validation function for checking for OCC conflicts on
Prepare. PREPARED-READS and PREPARED-WRITES get the pro-
posed timestamps for all transactions that the replica has prepared
and read or write to key, respectively.

PREPARE-OK or Abort(txn, timestamp) if any shards
replied ABORT or ABSTAIN. If any shards replied RETRY,
then the client retries with a new proposed timestamp (up
to a set limit of retries).

7. On receiving a Commit, the TAPIR replica: (1) commits the
transaction to its transaction log, (2) updates its versioned
store with w, (3) removes the transaction from its prepared
list (if it is there), and (4) responds to the client.

8. On receiving a Abort, the TAPIR replica: (1) logs the
abort, (2) removes the transaction from its prepared list (if
it is there), and (3) responds to the client.

Like other 2PC-based protocols, TAPIR can return the out-
come of the transaction to the application as soon as Prepare
returns from all shards (in Step 6) and send the Commit op-
erations asynchronously. As a result, using IR, TAPIR can
commit a transaction with a single round-trip to all replicas
in all shards.

5.2.2 IR Support
Because TAPIR’s Prepare is an IR consensus operation,
TAPIR must implement a client-side decide function, shown
in Figure 10, which merges inconsistent Prepare results from
replicas in a shard into a single result. TAPIR-DECIDE is
simple: if a majority of the replicas replied PREPARE-OK,
then it commits the transaction. This is safe because no
conflicting transaction could also get a majority of the replicas
to return PREPARE-OK.

TAPIR also supports Merge, shown in Figure 11, and
Sync, shown in Figure 12, at replicas. TAPIR-MERGE first
removes any prepared transactions from the leader where
the Prepare operation is TENTATIVE. This step removes any
inconsistencies that the leader may have because it executed
a Prepare differently – out-of-order or missed – by the rest
of the group.

The next step checks d for any PREPARE-OK results that
might have succeeded on the IR fast path and need to be
preserved. If the transaction has not committed or aborted
already, we re-run TAPIR-OCC-CHECK to check for conflicts

TAPIR-DECIDE(results)

1 if ABORT ∈ results
2 return ABORT
3 if count(PREPARE-OK,results)≥ f +1
4 return PREPARE-OK
5 if count(ABSTAIN,results)≥ f +1
6 return ABORT
7 if RETRY ∈ results
8 return RETRY, max(results.retry-timestamp)
9 return ABORT

Figure 10: TAPIR’s decide function. IR runs this if replicas return
different results on Prepare.

TAPIR-MERGE(d,u)

1 for ∀op ∈ d∪u
2 txn = op.args. txn
3 if txn. id ∈ prepared-list
4 DELETE(prepared-list, txn. id)
5 for op ∈ d
6 txn = op.args. txn
7 timestamp = op.args. timestamp
8 if txn. id 6∈ txn-log and op. result = = PREPARE-OK
9 R[op]. result = TAPIR-OCC-CHECK(txn, timestamp)

10 else
11 R[op]. result = op. result
12 for op ∈ u
13 txn = op.args. txn
14 timestamp = op.args. timestamp
15 R[op]. result = TAPIR-OCC-CHECK(txn, timestamp)
16 return R

Figure 11: TAPIR’s merge function. IR runs this function at the
leader on synchronization and recovery.

with other previously prepared or committed transactions. If
the transaction conflicts, then we know that its PREPARE-OK
did not succeed at a fast quorum, so we can change it to
ABORT; otherwise, for correctness, we must preserve the
PREPARE-OK because TAPIR may have moved on to the
commit phase of 2PC. Further, we know that it is safe to pre-
serve these PREPARE-OK results because, if they conflicted
with another transaction, the conflicting transaction must have
gotten its consensus result on the IR slow path, so if TAPIR-
OCC-CHECK did not find a conflict, then the conflicting trans-
action’s Prepare must not have succeeded.

Finally, for the operations in u, we simply decide a result
for each operation and preserve it. We know that the leader is
now consistent with f +1 replicas, so it can make decisions
on consensus result for the majority.

TAPIR’s sync function, shown in Figure 12, runs at the
other replicas to reconcile TAPIR state with the master
records, correcting missed operations or consensus results
where the replica did not agree with the group. It simply
applies operations and consensus results to the replica’s
state: it logs aborts and commits, and prepares uncommitted
transactions where the group responded PREPARE-OK.
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TAPIR-SYNC(R)

1 for ∀op ∈ R
2 if op 6∈ r or op. result 6= r[op]. result
3 txn = op.args. txn
4 timestamp = op.args. timestamp
5 if op. func = = Prepare
6 if op. result = = PREPARE-OK
7 if txn. id 6∈ prepared-list and txn. id 6∈ txn-log
8 prepared-list[txn. id] = timestamp
9 elseif txn. id ∈ prepared-list

10 DELETE(prepared-list, txn. id)
11 else
12 txn-log[txn. id]. txn = txn
13 txn-log[txn. id]. timestamp = timestamp
14 if op. func = = Commit
15 txn-log[txn. id]. status = COMMITTED
16 else
17 txn-log[txn. id]. status = ABORTED
18 if txn. id ∈ prepared-list
19 DELETE(prepared-list, txn. id)

Figure 12: TAPIR’s function for synchronizing inconsistent replica
state. IR runs this on each replica except the leader during synchro-
nization. r is the replica’s local record.

5.2.3 Coordinator Recovery
If a client fails while in the process of committing a transac-
tion, TAPIR ensures that the transaction runs to completion
(either commits or aborts). Further, the client may have re-
turned the commit or abort to the application, so we must
ensure that the client’s commit decision is preserved. For
this purpose, TAPIR uses the cooperative termination pro-
tocol defined by Bernstein [6] for coordinator recovery and
used by MDCC [23]. TAPIR designates one of the participant
shards as a backup shard, the replicas in which can serve as a
backup coordinator if the client fails. As observed by MDCC,
because coordinators cannot unilaterally abort transactions
(i.e., if a client receives f +1 PREPARE-OK responses from
each participant, it must commit the transaction), a backup
coordinator can safely complete the protocol without block-
ing. However, we must ensure that no two coordinators for a
transaction are active at the same time.

Coordinator Changes. We use a coordinator change proto-
col, similar to IR’s view change protocol to ensure that only
one coordinator is active at a time.3 For each transaction, we
designate one of the participant shards as a backup shard. The
initial coordinator for every transaction is the client. In every
subsequent view, the currently active backup coordinator is a
replica from the backup shard.

For every transaction in its prepared-list, each TAPIR
replica keeps the transaction’s backup shard and a current co-
ordinator view. Replicas only process and respond to Prepare,
Commit and Abort operations from the active coordinator des-
ignated by the current view, identified by indexing into the list

3 Other possible ways to achieve this goal include logging the currently active
backup coordinator to a service like Chubby [8] or ZooKeeper [21], or giving
each backup coordinator a lease in turn.

of backup shard replicas with the coordinator view number.
Replicas also keep a no-vote list with transactions that the
replica knows a backup coordinator may abort.

If the current coordinator is suspected to have failed, any
of the participants can initiate a coordinator change. In do-
ing so, it keeps the client or any previous backup coordinator
from sending operations to the participating replicas. The new
coordinator can then poll the participant using Prepare, and
make a commit decision without interference from other coor-
dinators. The election protocol for a new backup coordinator
progresses as follows:
1. Any replica in any participant shard calls CoordinatorChange

through IR as a consensus operation on the backup shard.
2. Each replica that executes CoordinatorChange through

IR, increments and returns its current coordinator view
number v. If the replica is not already in the COORDINATOR-
VIEW-CHANGE state, it sets its state to COORDINATOR-
VIEW-CHANGE and stops responding to operations for
that transaction.

3. The decide function for CoordinatorChange returns the
highest v returned by the replicas.

4. Once CoordinatorChange returns successfully, the replica
sends StartCoordinatorView(vnew), where vnew is the
returned view number from CoordinatorChange, as an IR
inconsistent operation to all participant shards, including
its own.

5. Any replica that receives StartCoordinatorView checks
if vnew is higher or equal to its current view. If so, the
replica updates its current view number and begins accept-
ing Prepare, Commit and Abort from the active backup
coordinator designated by the new view. If the replica is
in the backup shard, it can set its state back to NORMAL.

6. When a replica executes StartCoordinatorView for the
view where it is the designated backup coordinator, it
begins the cooperative termination protocol.

The Merge function for CoordinatorChange preserves the
consensus result if it is greater than or equal to the cur-
rent view number at the leader during synchronization. The
Sync function for CoordinatorChange sets the replica state
to COORDINATOR-VIEW-CHANGE if the consensus result is
larger than the replica’s current view number. The Sync func-
tion for StartCoordinatorView just executes the function: it
updates the replica’s current view number if vnew is greater
than or equal to it and sets the state back to NORMAL if the
replica is in the backup shard.

Cooperative Termination. The backup coordination proto-
col executed by the active coordinator is similar to the co-
operative termination protocol described by Bernstein [6],
with changes to accommodate IR and TAPIR. The most no-
table changes are that the backup coordinators do not propose
timestamps. If the client successfully prepared the transaction
at a timestamp t (i.e., achieved at least f +1 PREPARE-OK in
every participant shard), then the transaction will commit at t.
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TAPIR-RECOVERY-DECIDE(results)

1 if ABORT ∈ results
2 return ABORT if count(NO-VOTE,results)≥ f +1
3 return ABORT
4 if count(PREPARE-OK,results)≥ f +1
5 return PREPARE-OK
6 return RETRY

Figure 13: TAPIR’s decide function for Prepare on coordinator
recovery. IR runs this if replicas return different results on Prepare.
This decide function differs from the normal case execution decide
because it is not safe to return ABORT unless it is sure the original
coordinator did not receive PREPARE-OK.

Otherwise, the backup coordinator will eventually abort the
transaction.

Next, in Bernstein’s algorithm, any single participant can
abort the transaction if they have not yet voted (i.e., replied to
a coordinator). However, with IR, no single replica can abort
the transaction without information about the state of the other
replicas in the shard. As a result, replicas return a NO-VOTE
response and add the transaction to their no-vote-list. Once
a replica adds a transaction to the NO-VOTE-LIST, it will
always respond NO-VOTE to Prepare operations. Eventually,
all replicas in the shard will either converge to a response (i.e.,
PREPARE-OK, ABORT) to the original coordinator’s Prepare
or to a NO-VOTE response. TAPIR’s modified cooperative
termination protocol proceeds as follows:
1. The backup coordinator polls the participants with Prepare

with no proposed timestamp by invoking Prepare as a
consensus operation in IR with the decide function out-
lined in Figure 13.

2. Any replica that receives Prepare with no propose times-
tamp, returns PREPARE-OK if it has committed or pre-
pared the transaction, ABORT if it has received an Abort

for the transaction or committed a conflicting transaction
and NO-VOTE if it does not have the transaction in its
prepared-list or txn-log. If the replica returns NO-VOTE,
it adds the transaction to its no-vote-list.

3. The coordinator continues to send Prepare as an IR
operation until it either receives a ABORT or PREPARE-OK
from all participant shards. Note that the result will be
ABORT if a majority of replicas respond NO-VOTE.

4. If all participant shards return PREPARE-OK, the coordi-
nator sends Commit; otherwise, it sends Abort.

Assuming f +1 replicas are up in each participant shard and
shards are able to communicate, this process will eventually
terminate with a backup coordinator sending Commit or Abort
to all participants.

We must also incorporate the NO-VOTE into our Merge and
Sync handlers for Prepare. We make the following changes
to Merge for the final function shown in Figure 14: (lines 5-6)
delete any tentative NO-VOTES from the no-vote-list at the
leader for consistency, (lines 10-11) return NO-VOTE with-
out running TAPIR-OCC-CHECK if the transaction is already
in the no-vote-list because any result to the original Prepare

TAPIR-MERGE(d,u)

1 for ∀op ∈ d∪u
2 txn = op.args. txn
3 if txn. id ∈ prepared-list
4 DELETE(prepared-list, txn. id)
5 if txn. id ∈ no-vote-list
6 DELETE(no-vote-list, txn. id)
7 for op ∈ d
8 txn = op.args. txn
9 timestamp = op.args. timestamp

10 if txn. id ∈ no-vote-list
11 R[op]. result = NO-VOTE
12 elseif txn. id 6∈ txn-log and op. result = = PREPARE-OK
13 R[op]. result = TAPIR-OCC-CHECK(txn, timestamp)
14 else
15 R[op]. result = op. result
16 for op ∈ u
17 txn = op.args. txn
18 if txn. id ∈ no-vote-list
19 R[op]. result = NO-VOTE
20 else
21 timestamp = op.args. timestamp
22 R[op]. result = TAPIR-OCC-CHECK(txn, timestamp)
23 return R

Figure 14: TAPIR’s merge function. IR runs this function at the
leader on synchronization and recovery. This version handles
NO-VOTE results.

TAPIR-SYNC(R)

1 for ∀op ∈ R
2 if op 6∈ r or op. result 6= r[op]. result
3 txn = op.args. txn
4 timestamp = op.args. timestamp
5 if op. func = = Prepare
6 if op. result = = PREPARE-OK
7 if txn. id 6∈ prepared-list and txn. id 6∈ txn-log
8 prepared-list[txn. id] = timestamp
9 elseif txn. id ∈ prepared-list

10 DELETE(prepared-list, txn. id)
11 if op. result = = NO-VOTE and txn. id 6∈ txn-log
12 no-vote-list[txn. id] = timestamp
13 else
14 txn-log[txn. id]. txn = txn
15 txn-log[txn. id]. timestamp = timestamp
16 if op. func = = Commit
17 txn-log[txn. id]. status = COMMITTED
18 else
19 txn-log[txn. id]. status = ABORTED
20 if txn. id ∈ prepared-list
21 DELETE(prepared-list, txn. id)

Figure 15: TAPIR’s function for synchronizing inconsistent replica
state. IR runs this on each replica except the leader during synchro-
nization. r is the replica’s local record.

could not have succeeded, (lines 18-19) do the same for opera-
tions without majority result where the original coordinator’s
Prepare definitely did not succeed. If the consensus result to
the Prepare is NO-VOTE in Sync, we add transactions to the
no-vote-list and remove it from the prepared-list, as shown
in lines 11-12 of Figure 15.
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5.3 Correctness
To prove correctness, we show that TAPIR maintains the
following properties4 given up to f failures in each replica
group and any number of client failures:

• Isolation. There exists a global linearizable ordering of
committed transactions.

• Atomicity. If a transaction commits at any participating
shard, it commits at them all.

• Durability. Committed transactions stay committed,
maintaining the original linearizable order.

Appendix B gives a TLA+ [27] specification for TAPIR with
IR, which we have model-checked for correctness.

5.3.1 Isolation
For correctness, we must show that any two conflicting trans-
actions, A and B, that violate the linearizable transaction or-
dering cannot both commit. If A and B have a conflict, then
there must be at least one common shard that is participating
in both A and B. We show that, in that shard, Prepare(A) and
Prepare(B) cannot both return PREPARE-OK, so one transac-
tion must abort.

In the common shard, IR’s visibility property (P2) guar-
antees that Prepare(A) must be visible to Prepare(B) (i.e.,
executes first at one replica out of every f + 1 quorum) or
Prepare(B) is visible to Prepare(A). Without loss of gener-
ality, suppose that Prepare(A) is visible to Prepare(B) and
the group returns PREPARE-OK to Prepare(A). Any replica
that executes TAPIR-OCC-CHECK for both A and B will not
return PREPARE-OK for both, so at least one replica out of any
f +1 quorum will not return PREPARE-OK to Prepare(B). IR
will not get a fast quorum of matching PREPARE-OK results
for Prepare(B), and TAPIR’s decide function will not return
PREPARE-OK because it will never get the f + 1 matching
PREPARE-OK results that it needs. Thus, IR will never return
a consensus result of PREPARE-OK for Prepare(B). The same
holds if Prepare(B) is visible to Prepare(A) and the group re-
turns PREPARE-OK to Prepare(B). Thus, IR will never return
a successful consensus result of PREPARE-OK to executing
both Prepare(A) and Prepare(B) in the common participant
shard and TAPIR will not be able to commit both transactions.

Further, once decided, the successful consensus results
for Prepare(A) and Prepare(B) will persist in the record
of at least one replica out of every quorum, unless it has
been modified by the application through Merge. TAPIR will
never change another result to a PREPARE-OK, so the shard
will never respond PREPARE-OK to both transactions. IR
will ensure that the successful consensus result is eventually
Sync’d at all replicas. Once a TAPIR replica prepared a
transaction, it will continue to return PREPARE-OK until it
receives a Commit or Abort for the transaction. As a result, if
the shard returned PREPARE-OK as a successful consensus
result to Prepare(A), then it will never allow Prepare(B) to

4 We do not prove database consistency, as it depends on application invari-
ants; however, strict serializability is sufficient to enforce consistency.

also return PREPARE-OK (unless A aborts), ensuring that B is
never able to commit. The opposite also holds true.

5.3.2 Atomicity
If a transaction commits at any participating shard, the TAPIR
client must have received a successful PREPARE-OK from
every participating shard on Prepare. Barring failures, it will
ensure that Commit eventually executes successfully at every
participant. TAPIR replicas always execute Commit, even if
they did not prepare the transaction, so Commit will eventually
commit the transaction at every participant if it executes at
one participant.

If the coordinator fails, then at least one replica in a partic-
ipant shard will detect the failure and initiate the coordinator
recovery protocol. Assuming no more than f simultaneous
failures in the backup shard, the coordinator change protocol
will eventually pick a new active backup coordinator from
the backup shard. At this point, the participants will have
stopped processing operations from the client and any previ-
ous backup coordinators.

Backup coordinators do not propose timestamps, so if
any replica in a participant shard received a Commit, then
the client’s Prepare must have made it into the operation
set of every participant shard with PREPARE-OK as the con-
sensus result. IR’s consensus result and eventual consistency
properties (P3 and P4) ensure that the PREPARE-OK will even-
tually be applied at all replicas in every participant shard and
TAPIR ensures that successful PREPARE-OK results are not
changed in Merge (as shown above). Once a TAPIR replica
applies PREPARE-OK, it will continue to return PREPARE-OK,
so once replicas in participant groups have stopped processing
operations from previous coordinators, all non-failed replicas
in all shards will eventually return PREPARE-OK. As a result,
the backup coordinator must eventually receive PREPARE-OK
as well from all participants.

In the meantime, the backup coordinator is guaranteed to
not receive an ABORT from a participant shard. A participant
shard will only return an ABORT if: (1) a conflicting transac-
tion committed, (2) a majority of the replicas return NO-VOTE
because they did not have a record of the transaction, or (3)
the transaction was aborted on the shard. Case (1) is not
possible because the conflicting transaction could not have
also received a successful consensus result of PREPARE-OK
(based on our isolation proof) and IR’s consensus result prop-
erty (P3) ensures that the conflicting transaction could never
get a PREPARE-OK consensus result, so the conflicting trans-
action cannot commit. Case (2) is not possible because the
client could not have received PREPARE-OK as a consensus
result if a majority of the replicas do not have the transaction
in their prepared-list and IR’s P3 and P4 ensures the transac-
tion eventually makes its way into the prepared-list of every
replica. Case (3) is not possible because the client could not
have sent Abort if it got PREPARE-OK from all participant
shards and no previous backup coordinator could have sent
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Abort because cases (1) and (2) will never happen. As a result,
the backup coordinator will not abort the transaction.

5.3.3 Durability
For all committed transactions, either the client or a backup
coordinator will eventually execute Commit successfully as an
IR inconsistent operation. IR guarantees that the Commit will
never be lost (P1) and every replica will eventually execute or
synchronize it. On Commit, TAPIR replicas use the transaction
timestamp included in Commit to order the transaction in their
log, regardless of when they execute it, thus maintaining the
original linearizable ordering. If there are no coordinator
failures, a transaction would eventually be finalized through
an IR inconsistent operation (Commit/Abort), which ensures
that the decision would never be lost. As described above,
for coordinator failures, the coordinator recovery protocol
ensures that a backup coordinator would eventually send
Commit or Abort to all participants.

6. TAPIR Extensions
We now describe four useful extensions to TAPIR.

6.1 Read-only Transactions
Since it uses a multi-versioned store, TAPIR easily supports
globally-consistent read-only transactions at a timestamp.
However, since TAPIR replicas are inconsistent, it is impor-
tant to ensure that: (1) reads are up-to-date and (2) later write
transactions do not invalidate the reads. To achieve these
properties, TAPIR replicas keep a read timestamp for each
object.

TAPIR’s read-only transactions have a single round-trip
fast path that sends the Read to only one replica. If that
replica has a validated version of the object – where the
write timestamp precedes the snapshot timestamp and the
read timestamp follows the snapshot timestamp – we know
that the returned object is valid, because it is up-to-date,
and will remain valid, because it will not be overwritten
later. If the replica lacks a validated version, TAPIR uses
the slow path and executes a QuorumRead through IR as
an inconsistent operation. A QuorumRead updates the read
timestamp, ensuring that at least f +1 replicas do not accept
writes that would invalidate the read.

More precisely, the protocol for read-only transactions
follows:
1. The TAPIR client chooses a snapshot timestamp for the

transaction; for example, the client’s local time.
2. The client sends Read(key,version), where key is what

the application wants to read and version is the snapshot
timestamp.

3. If the replica has a validated version of the object, it returns
it. Otherwise, it returns a failure.

4. If the client could not get the value from the replica,
it executes a QuorumRead(key,version) through IR as an
inconsistent operation.

5. Any replica that receives QuorumRead returns the latest
version of the object from the data store. It also writes the
Read to the transaction log and updates the data store to
ensure that it will not prepare for transactions that would
invalidate the Read.

6. The client returns the object with the highest timestamp
to the application.
As a brief sketch of correctness, it is always safe to read a

version of the key that is validated at the snapshot timestamp.
The version will always be valid at the snapshot timestamp
because the write timestamp for the version is earlier than
the snapshot timestamp and the read timestamp is after the
snapshot timestamp. If the replica does not have a validated
version, the replicated QuorumRead ensures that: (1) the client
gets the latest version of the object (because at least 1 of any
f +1 replicas must have it), and (2) a later write transaction
cannot overwrite the version (because at least 1 of the f +1
QuorumRead replicas will block it).

Since TAPIR also uses loosely synchronized clocks, it
could be combined with Spanner’s algorithm for providing
externally consistent read-only transactions as well. This
combination would require Spanner’s TrueTime technology
and waits at the client for the TrueTime uncertainty bound.
Note that while TAPIR itself provides external consistency
for read-write transactions regardless of clock skew, this read-
only protocol would provide linearizability guarantees only
if the clock skew did not exceed the TrueTime bound, like
Spanner [13].

6.2 Serializability
TAPIR is restricted in its ability to accept transactions out
of order because it provides linearizability, i.e., strict serial-
izability. Thus, TAPIR replicas cannot accept writes that are
older than the last write for the same key, and they cannot
accept reads of older versions of the same key.

However, if TAPIR’s guarantees were weakened to (non-
strict) serializability, then it can then accept proposed times-
tamps any time in the past as long as they respect the serializ-
able transaction ordering. This optimization requires tracking
the timestamp of the transaction that last read and wrote each
version.

With this optimization, TAPIR can now accept: (1) reads
of past versions, as long as the read timestamp precedes the
write timestamp of the next version, and (2) writes in the
past (per the Thomas Write Rule [45]), as long as the write
timestamp follows the read timestamp of the previous version
and precedes the write timestamp of the next version.

6.3 Synchronous Log Writes
Given the ability to synchronously log to durable storage
(e.g. hard disk, NVRAM), we can reduce TAPIR’s quorum
requirements. As long as we can recover the log after failures,
we can reduce the replica group size to 2 f +1 and reduce all
consensus and synchronization quorums to f +1.
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6.4 Retry Timestamp Selection
A client can increase the likelihood that participant replicas
will accept its proposed timestamp by proposing a very large
timestamp; this decreases the likelihood that the participant
replicas have already accepted a higher timestamp. Thus, to
decrease the chances of retrying forever, clients can exponen-
tially increase their proposed timestamp on each retry.

6.5 Tolerating Very High Skew
If there is significant clock skew between servers and clients,
TAPIR can use waits at the participant replicas to decrease
the likelihood that transactions will arrive out of timestamp
order. On receiving each Prepare message, the participant
replica can wait (for the error-bound period) to see if other
transactions with smaller timestamps will arrive. After the
wait, the replica can process transactions in timestamp order.
This wait increases the chances that the participant replica
can process transactions in timestamp order and decreases the
number of transactions that it will have to reject for arriving
out of order.

7. Evaluation
In this section, our experiments demonstrate the following:

• TAPIR provides better latency and throughput than con-
ventional transaction protocols in both the datacenter and
wide-area environments.

• TAPIR’s abort rate scales similarly to other OCC-based
transaction protocols as contention increases.

• Clock synchronization sufficient for TAPIR’s needs is
widely available in both datacenter and wide-area environ-
ments.

• TAPIR provides performance comparable to systems with
weak consistency guarantees and no transactions.

7.1 Experimental Setup
We ran our experiments on Google Compute Engine [19]
(GCE) with VMs spread across 3 geographical regions – US,
Europe and Asia – and placed in different availability zones
within each geographical region. Each server has a virtualized,
single core 2.6 GHz Intel Xeon, 8 GB of RAM and 1 Gb NIC.

7.1.1 Testbed Measurements
As TAPIR’s performance depends on clock synchronization
and round-trip times, we first present latency and clock skew
measurements of our test environment. As clock skew in-
creases, TAPIR’s latency increases and throughput decreases
because clients may have to retry more Prepare operations. It
is important to note that TAPIR’s performance depends on the
actual clock skew, not a worst-case bound like Spanner [13].

We measured the clock skew by sending a ping message
with timestamps taken on either end. We calculate skew
by comparing the timestamp taken at the destination to
the one taken at the source plus half the round-trip time
(assuming that network latency is symmetric). Table 1 reports

Table 1: Measured RTTs and clock skews between Google Compute
VMs.

Latency (ms) Clock Skew (ms)

US Europe Asia US Europe Asia

US 1.2 111.3 166.5 3.4 1.3 1.86

Europe – 0.8 261.8 – 0.1 1.9

Asia – – 10.8 – – .3

the average skew and latency between the three geographic
regions. Within each region, we average over the availability
zones. Our VMs benefit from Google’s reliable wide-area
network infrastructure; although we use UDP for RPCs over
the wide-area, we saw negligible packet drops and little
variation in round-trip times.

The average RTT between US-Europe was 110 ms; US-
Asia was 165 ms; Europe-Asia was 260 ms. We found the
clock skew to be low, averaging between 0.1 ms and 3.4 ms,
demonstrating the feasibility of synchronizing clocks in the
wide area. However, there was a long tail to the clock skew,
with the worst case clock skew being around 27 ms – making
it significant that TAPIR’s performance depends on actual
rather than worst-case clock skew. As our measurements
show, the skew in this environment is low enough to achieve
good performance.

7.1.2 Implementation
We implemented TAPIR in a transactional key-value storage
system, called TAPIR-KV. Our prototype consists of 9094
lines of C++ code, not including the testing framework.

We also built two comparison systems. The first, OCC-
STORE, is a “standard” implementation of 2PC and OCC,
combined with an implementation of Multi-Paxos [28]. Like
TAPIR, OCC-STORE accumulates a read and write set with
read versions at the client during execution and then runs 2PC
with OCC checks to commit the transaction. OCC-STORE
uses a centralized timestamp server to generate transaction
timestamps, which we use to version data in the multi-
versioned storage system. We verified that this timestamp
server was not a bottleneck in our experiments.

Our second system, LOCK-STORE is based on the Spanner
protocol [13]. Like Spanner, it uses 2PC with S2PL and Multi-
Paxos. The client acquires read locks during execution at
the Multi-Paxos leaders and buffers writes. On Prepare, the
leader replicates these locks and acquires write locks. We use
loosely synchronized clocks at the leaders to pick transaction
timestamps, from which the coordinator chooses the largest
as the commit timestamp. We use the client as the coordinator,
rather than one of the Multi-Paxos leaders in a participant
shard, for a more fair comparison with TAPIR-KV. Lacking
access to TrueTime, we set the TrueTime error bound to 0,
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Table 2: Transaction profile for Retwis workload.

Transaction Type # gets # puts workload %

Add User 1 3 5%
Follow/Unfollow 2 2 15%
Post Tweet 3 5 30%
Load Timeline rand(1,10) 0 50%
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Figure 16: Average Retwis transaction Latency (Zipf coefficient
0.75) versus throughput within a datacenter.

eliminating the need to wait out clock uncertainty and thereby
giving the benefit to this protocol.

7.1.3 Workload
We use two workloads for our experiments. We first test using
a synthetic workload based on the Retwis application [31].
Retwis is an open-source Twitter clone designed to use the
Redis key-value storage system [40]. Retwis has a number
of Twitter functions (e.g., add user, post tweet, get timeline,
follow user) that perform Puts and Gets on Redis. We treat
each function as a transaction, and generate a synthetic
workload based on the Retwis functions as shown in Table 2.

Our second experimental workload is YCSB+T [16], an
extension of YCSB [12] – a commonly-used benchmark for
key-value storage systems. YCSB+T wraps database opera-
tions inside simple transactions such as read, insert or read-
modify-write. However, we use our Retwis benchmark for
many experiments because it is more sophisticated: transac-
tions are more complex – each touches 2.5 shards on average
– and longer – each executes 4-10 operations.

7.2 Single Datacenter Experiments
We begin by presenting TAPIR-KV’s performance within a
single datacenter. We deploy TAPIR-KV and the comparison
systems over 10 shards, all in the US geographic region,
with 3 replicas for each shard in different availability zones.
We populate the systems with 10 million keys and make
transaction requests with a Zipf distribution (coefficient 0.75)
using an increasing number of closed-loop clients.
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Figure 17: Average wide-area latency for Retwis transactions, with
leader located in the US and client in US, Europe or Asia.

Figure 16 shows the average latency for a transaction in
our Retwis workload at different throughputs. At low offered
load, TAPIR-KV has lower latency because it is able to commit
transactions in a single round-trip to all replicas, whereas the
other systems need two; its commit latency is thus reduced
by 50%. However, Retwis transactions are relatively long, so
the difference in transaction latency is relatively small.

Compared to the other systems, TAPIR-KV is able to
provide roughly 3× the peak throughput, which stems directly
from IR’s weak guarantees: it has no leader and does not
require cross-replica coordination. Even with moderately
high contention (Zipf coefficient 0.75), TAPIR-KV replicas
are able to inconsistently execute operations and still agree
on ordering for transactions at a high rate.

7.3 Wide-Area Latency
For wide-area experiments, we placed one replica from each
shard in each geographic region. For systems with leader-
based replication, we fix the leader’s location in the US and
move the client between the US, Europe and Asia. Figure 17
gives the average latency for Retwis transactions using the
same workload as in previous section.

When the client shares a datacenter with the leader, the
comparison systems are faster than TAPIR-KV because TAPIR-
KV must wait for responses from all replicas, which takes
160 ms to Asia, while OCC-STORE and LOCK-STORE can
commit with a round-trip to the local leader and one other
replica, which is 115 ms to Europe.

When the leader is in a different datacenter, LOCK-STORE
suffers because it must go to the leader on Read for locks,
which takes up to 160 ms from Asia to the US, while OCC-
STORE can go to a local replica on Read like TAPIR-KV. In our
setup TAPIR-KV takes longer to Commit, as it has to contact
the furthest replica, and the RTT between Europe and Asia is
more expensive than two round-trips between US to Europe
(likely because Google’s traffic goes through the US). In fact,
in this setup, IR’s slow path, at two RTT to the two closest
replicas, is faster than its fast path, at one RTT to the furthest
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Figure 18: Abort rates at varying Zipf co-efficients with a constant
load of 5,000 transactions/second in a single datacenter.

replica. We do not implement the optimization of running the
fast and slow paths in parallel, which could provide better
latency in this case.

7.4 Abort and Retry Rates
TAPIR is an optimistic protocol, so transactions can abort
due to conflicts, as in other OCC systems. Moreover, TAPIR
transactions can also be forced to abort or retry when conflict-
ing timestamps are chosen due to clock skew. We measure the
abort rate of TAPIR-KV compared to OCC-STORE, a conven-
tional OCC design, for varying levels of contention (varying
Zipf coefficients). These experiments run in a single region
with replicas in three availability zones. We supply a constant
load of 5,000 transactions/second.

With a uniform distribution, both TAPIR-KV and OCC-
STORE have very low abort rates: 0.005% and 0.04%, respec-
tively. Figure 18 gives the abort rate for Zipf co-efficients
from 0.5 to 1.0. At lower Zipf co-efficients, TAPIR-KV has
abort rates that are roughly an order of magnitude lower than
OCC-STORE. TAPIR’s lower commit latency and use of opti-
mistic timestamp ordering reduce the time between Prepare

and Commit or Abort to a single round-trip, making transac-
tions less likely to abort.

Under heavy contention (Zipf coefficient 0.95), both
TAPIR-KV and OCC-STORE have moderately high abort rates:
36% and 40%, respectively, comparable to other OCC-based
systems like MDCC [23]. These aborts are primarily due to
the most popular keys being accessed very frequently. For
these workloads, locking-based systems like LOCK-STORE
would make better progress; however, clients would have to
wait for extended periods to acquire locks.

TAPIR rarely needs to retry transactions due to clock skew.
Even at moderate contention rates, and with simulated clock
skew of up to 50 ms, we saw less than 1% TAPIR retries
and negligible increase in abort rates, demonstrating that
commodity clock synchronization infrastructure is sufficient.
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Figure 19: Comparison with weakly consistent storage systems.

7.5 Comparison with Weakly Consistent Systems
We also compare TAPIR-KV with three widely-used even-
tually consistent storage systems, MongoDB [36], Cassan-
dra [26], and Redis [40]. For these experiments, we used
YCSB+T [16], with a single shard with 3 replicas and 1
million keys. MongoDB and Redis support master-slave
replication; we set them to use synchronous replication
by setting WriteConcern to REPLICAS SAFE in MongoDB
and the WAIT command [42] for Redis. Cassandra uses
REPLICATION FACTOR=2 to store copies of each item at any 2
replicas.

Figure 19 demonstrates that the latency and throughput
of TAPIR-KV is comparable to these systems. We do not
claim this to be an entirely fair comparison; these systems
have features that TAPIR-KV does not. At the same time,
the other systems do not support distributed transactions –
in some cases, not even single-node transactions – while
TAPIR-KV runs a distributed transaction protocol that ensures
strict serializability. Despite this, TAPIR-KV’s performance
remains competitive: it outperforms MongoDB, and has
throughput within a factor of 2 of Cassandra and Redis,
demonstrating that strongly consistent distributed transactions
are not incompatible with high performance.

8. Related Work
Inconsistent replication shares the same principle as past
work on commutativity, causal consistency and eventual con-
sistency: operations that do not require ordering are more effi-
cient. TAPIR leverages IR’s weak guarantees, in combination
with optimistic timestamp ordering and optimistic concur-
rency control, to provide semantics similar to past work on
distributed transaction protocols but with both lower latency
and higher throughput.

8.1 Replication
Transactional storage systems currently rely on strict consis-
tency protocols, like Paxos [28] and VR [38]. These protocols
enforce a strict serial ordering of operations and no diver-
gence of replicas. In contrast, IR is more closely related to
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Table 3: Comparison of read-write transaction protocols in replicated transactional storage systems.

Transaction System Replication Protocol Read Latency Commit Latency Msg At Bottleneck Isolation Level Transaction Model

Spanner [13] Multi-Paxos [28] 2 (leader) 4 2n + reads Strict Serializable Interactive
MDCC [23] Gen. Paxos [29] 2 (any) 3 2n Read-Committed Interactive
Repl. Commit [35] Paxos [28] 2n 4 2 Serializable Interactive
CLOCC [1, 32] VR [38] 2 (any) 4 2n Serializable Interactive
Lynx [47] Chain Repl. [46] – 2n 2 Serializable Stored procedure
TAPIR IR 2 (to any) 2 2 Strict Serializable Interactive

eventually consistent replication protocols, like Bayou [44],
Dynamo [15] and others [25, 26, 41]. The key difference is
that applications resolve conflicts after they happen with even-
tually consistent protocols, whereas IR consensus operations
allow applications to decide conflicts and recover that deci-
sion later. As a result, applications can enforce higher-level
guarantees (e.g., mutual exclusion, strict serializability) that
they cannot with eventual consistency.

IR is also related to replication protocols that avoid co-
ordination for commutative operations (e.g., Generalized
Paxos [29], EPaxos [37]). These protocols are more general
than IR because they do not require application invariants to
be pairwise. For example, EPaxos could support invariants
on bank account balances, while IR cannot. However, these
protocols consider two operations to commute if their order
does not matter when applied to any state, whereas IR re-
quires only that they produce the same results in a particular
execution. This is a form of state-dependent commutativity
similar to SIM-commutativity [10]. As a result, in the exam-
ple from Section 3.1.3, EPaxos would consider any operations
on the same lock to conflict, whereas IR would allow two
unsuccessful Lock operations to the same lock to commute.

8.2 Distributed Transactions
A technique similar to optimistic timestamp ordering was
first explored by Thomas [45], while CLOCC [1] was the
first to combine it with loosely synchronized clocks. We ex-
tend Thomas’s algorithm to: (1) support multiple shards, (2)
eliminate synchronous disk writes, and (3) ensure availability
across coordinator failures. Spanner [13] and Granola [14]
are two recent systems that use loosely synchronized clocks
to improve performance for read-only transactions and inde-
pendent transactions, respectively. TAPIR’s use of loosely
synchronized clocks differs from Spanner’s in two key ways:
(1) TAPIR depends on clock synchronization only for perfor-
mance, not correctness, and (2) TAPIR’s performance is tied
to the actual clock skew, not TrueTime’s worst-case estimated
bound. Spanner’s approach for read-only transactions com-
plements TAPIR’s high-performance read-write transactions,
and the two could be easily combined.

CLOCC and Granola were both combined with VR [32] to
replace synchronous disk writes with in-memory replication.
These combinations still suffer from the same redundancy –

enforcing ordering both at the distributed transaction and
replication level – that we discussed in Section 2. Other
layered protocols, like the examples shown in Table 3, have a
similar performance limitation.

Some previous work included in Table 3 improves through-
put (e.g., Warp [17], Transaction Chains [47], Tango [5]),
while others improve performance for read-only transactions
(e.g., MegaStore [4], Spanner [13]) or other limited transac-
tion types (e.g., Sinfonia’s mini-transactions [2], Granola’s
independent transactions [14], Lynx’s transaction chains [47],
and MDCC’s commutative transactions [23]) or weaker con-
sistency guarantees [34, 43]. In comparison, TAPIR is the
first transaction protocol to provide better performance (both
throughput and latency) for general-purpose, read-write trans-
actions using replication.

9. Conclusion
This paper demonstrates that it is possible to build distributed
transactions with better performance and strong consistency
semantics by building on a replication protocol with no consis-
tency. We present inconsistent replication, a new replication
protocol that provides fault tolerance without consistency,
and TAPIR, a new distributed transaction protocol that pro-
vides linearizable transactions using IR. We combined IR and
TAPIR in TAPIR-KV, a distributed transactional key-value
storage system. Our experiments demonstrate that TAPIR-KV
lowers commit latency by 50% and increases throughput by
3× relative to conventional transactional storage systems. In
many cases, it matches the performance of weakly-consistent
systems while providing much stronger guarantees.
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module IR consensus
This is a TLA+ specification of the Inconsistent Replication algorithm. (And a mechanically-

checked proof of its correctness using TLAPS)

extends FiniteSets, Naturals, TLC , TLAPS

Constants

Constant parameters: Replicas: the set of all replicas (Replica IDs)

Clients: the set of all clients (Client IDs)

Quorums: the set of all quorums SuperQuorums: the set of all super quorums Results: the

set of all possible result types OperationBody: the set of all possible operation bodies

(with arguments, etc. - can be infinite)

S : shard id of the shard Replicas constitute

f : maximum number of failures allowed (half of n)

Constants used to bound variables, for model checking (Nat is bounded) max vc: maximum
number of View-Changes allowed for each replicas max req: maximum number of op requests
performed by clients

constants Replicas, Clients, Quorums, SuperQuorums, Results, OpBody ,
AppClientFail , AppReplicaFail ,
SuccessfulInconsistentOp( ), SuccessfulConsensusOp( , ),
Merge( , ),
Sync( ),
ExecInconsistent( ),
ExecConsensus( ),
Decide( ),
f ,
S , Shards, S = shard id

max vc, max req

assume IsFiniteSet(Replicas)

assume QuorumAssumption
∆
=

∧Quorums ⊆ subset Replicas
∧ SuperQuorums ⊆ subset Replicas
∧ ∀Q1, Q2 ∈ Quorums : Q1 ∩Q2 6= {}
∧ ∀Q ∈ Quorums, R1, R2 ∈ SuperQuorums :

Q ∩ R1 ∩ R2 6= {}

assume FailuresAssumption
∆
=

∀Q ∈ Quorums : Cardinality(Q) > f

The possible states of a replica and the two types of operations currently defined by IR.

ReplicaState
∆
= {“NORMAL”, “FAILED”, “RECOVERING”, “VIEW-CHANGING”}

ClientState
∆
= {“NORMAL”, “FAILED”}
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OpType
∆
= {“Inconsistent”, “Consensus”}

OpStatus
∆
= {“TENTATIVE”, “FINALIZED”}

Definition of operation space

MessageId
∆
= [cid : Clients, msgid : Nat ]

Operations
∆
= [type : OpType, body : OpBody ]

Message is defined to be the set of all possible messages

TODO : Assumptions

Assume unique message ids

Assume no more than f replica failures

We use shart to specify for what shard this message was

(we share the variables)

Message
∆
=

[type : {“REQUEST”},
id : MessageId ,
op : Operations]

∪ [type : {“REPLY”}, reply no result

id : MessageId ,
v : Nat ,
src : Replicas]

∪
[type : {“REPLY”}, reply with result

id : MessageId ,
v : Nat ,
res : Results,
src : Replicas]
v = view num.

∪
[type : {“START-VIEW-CHANGE”},
v : Nat ,
src : Replicas]

∪
[type : {“DO-VIEW-CHANGE”},
r : subset ([msgid : MessageId ,

op : Operations,
res : Results]

∪ [msgid : MessageId ,
op : Operations]),

v : Nat ,
src : Replicas,
dst : Replicas]

∪
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[type : {“START-VIEW”},
v : Nat ,
src : Replicas]

∪
[type : {“START-VIEW-REPLY”},
v : Nat ,
src : Replicas,
dst : Replicas]

∪
[type : {“FINALIZE”}, finalize with no result

id : MessageId ,
op : Operations,
res : Results]

∪
[type : {“FINALIZE”}, finalize with result

id : MessageId ,
op : Operations,
res : Results]

∪ [type : {“CONFIRM”},
v : Nat ,
id : MessageId ,
op : Operations,
res : Results,
src : Replicas]

Variables and State Predicates

Variables: 1. State at each replica:

rState = Denotes current replica state. Either:

- NORMAL (processing operations)

- VIEW-CHANGING (participating in recovery)

rRecord = Unordered set of operations and their results rViewNumber = current view

number

2. State of communication medium: sentMsg = sent (but not yet received) messages

3. State at client: cCurrentOperation = crt operation requested by the client

cMmessageCounter = the message I must use for

the next operation

variables rState, rRecord , rViewNumber , rViewReplies, sentMsg , cCrtOp,
cCrtOpToFinalize, cMsgCounter , cCrtOpReplies, cCrtOpConfirms,
cState, aSuccessful , gViewChangesNo

Defining these tuples makes it easier to express which varibles remain unchanged

rVars
∆
= 〈rState, rRecord , rViewNumber , rViewReplies〉 Replica variables.
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cVars
∆
= 〈cCrtOp, current operation at a client

cCrtOpToFinalize,
cCrtOpReplies, current operation replies

cCrtOpConfirms,
cMsgCounter ,
cState〉 Client variables.

aVars
∆
= 〈aSuccessful〉 Application variables

oVars
∆
= 〈sentMsg , gViewChangesNo〉 Other variables.

vars
∆
= 〈rVars, cVars, oVars〉 All variables.

TypeOK
∆
=

∧ rState[S ] ∈ [Replicas → ReplicaState]
∧ rRecord [S ] ∈ [Replicas → subset ([msgid : MessageId ,

op : Operations,
res : Results,
status : OpStatus]

∪ [msgid : MessageId ,
op : Operations,
status : OpStatus])]

∧ rViewNumber [S ] ∈ [Replicas → Nat ]
∧ rViewReplies[S ] ∈ [Replicas → subset [type : {“do-view-change”,

“start-view-reply”},
viewNumber : Nat ,
r : subset ([msgid : MessageId ,

op : Operations,
res : Results,
status : OpStatus]

∪ [msgid : MessageId ,
op : Operations,
status : OpStatus]),

src : Replicas]]
∧ sentMsg [S ] ∈ subset Message
∧ cCrtOp[S ] ∈ [Clients → Operations ∪ {〈〉}]
∧ cCrtOpToFinalize ∈ [Clients → Operations ∪ {〈〉}]
∧ cCrtOpReplies[S ] ∈ [Clients → subset ([viewNumber : Nat ,

res : Results,
src : Replicas]

∪ [viewNumber : Nat ,
src : Replicas])]

∧ cCrtOpConfirms[S ] ∈ [Clients → subset [viewNumber : Nat ,
res : Results,
src : Replicas]]

∧ cMsgCounter [S ] ∈ [Clients → Nat ]
∧ cState ∈ [Clients → ClientState]
∧ aSuccessful ∈ subset ([mid : MessageId ,
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op : Operations,
res : Results]

∪ [mid : MessageId ,
op : Operations])

∧ gViewChangesNo[S ] ∈ Nat

Init
∆
=

∧ rState = [r ∈ Replicas 7→ “NORMAL”]
∧ rRecord = [r ∈ Replicas 7→ {}]
∧ rViewNumber = [r ∈ Replicas 7→ 0]
∧ rViewReplies = [r ∈ Replicas 7→ {}]
∧ sentMsg = {}
∧ cCrtOp = [c ∈ Clients 7→ 〈〉]
∧ cCrtOpToFinalize = [c ∈ Clients 7→ 〈〉]
∧ cCrtOpReplies = [c ∈ Clients 7→ {}]
∧ cCrtOpConfirms = [c ∈ Clients 7→ {}]
∧ cMsgCounter = [c ∈ Clients 7→ 0]
∧ cState = [c ∈ Clients 7→ “NORMAL”]
∧ aSuccessful = {}
∧ gViewChangesNo = 0

Actions

Send(m)
∆
= sentMsg ′ = [sentMsg except ! [S ] = @ ∪ {m}]

Client Actions

Note: choose does not introduce nondeterminism (the same value is chosen

each time)

Client sends a request

ClientRequest(c, op)
∆
=

∧ cCrtOp[S ][c] = 〈〉 the client is not waiting for a result

of another operation

∧ cCrtOpToFinalize[S ][c] = 〈〉
∧ cMsgCounter ′ = [cMsgCounter except ! [S ][c] = @ + 1]
∧ cCrtOp′ = [cCrtOp except ! [S ][c] = op]
∧ Send([type 7→ “REQUEST”,

id 7→ [cid 7→ c, msgid 7→ cMsgCounter [S ][c] + 1],
op 7→ op])

∧ unchanged 〈rVars, aVars, cCrtOpReplies, cCrtOpToFinalize,
cCrtOpConfirms, cState, gViewChangesNo〉

∧ cMsgCounter [S ][c] < max req BOUND the number of requests a client can make
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Client received a reply

ClientReceiveReply(c)
∆
=

∃msg ∈ sentMsg [S ] :
∧msg .type = “REPLY”
∧ cCrtOp[S ][c] 6= 〈〉
∧msg .id = [cid 7→ c, msgid 7→ cMsgCounter [S ][c]] reply to c’s request for crt op

TODO : if already reply from src, keep the most recent one (biggest view Number)

∧Assert(Cardinality(cCrtOpReplies[c]) < 10, “cCrtOpReplies cardinality bound”)

∧ ∨ ∧ cCrtOp[S ][c].type = “Inconsistent”
∧ cCrtOpReplies ′ = [cCrtOpReplies except ! [S ][c] = @ ∪

{[viewNumber 7→ msg .v ,
src 7→ msg .src]}]

∨ ∧ cCrtOp[S ][c].type = “Consensus”
∧ cCrtOpReplies ′ = [cCrtOpReplies except ! [S ][c] = @ ∪

{[viewNumber 7→ msg .v ,
res 7→ msg .res,
src 7→ msg .src]}]

∧ unchanged 〈cCrtOp, cCrtOpToFinalize, cCrtOpConfirms,
cMsgCounter , cState, rVars, aVars, oVars〉

“Helper” formulas

matchingViewNumbers(Q , c)
∆
=

a (super)quorum of replies with matching view numbers

∧ ∀ r ∈ Q :
∧ ∃ reply ∈ cCrtOpReplies[S ][c]: reply.src = r

∧ ∀ p ∈ Q : ∃ rr , pr ∈ cCrtOpReplies[S ][c] :
∧ rr .src = r
∧ pr .src = p
∧ rr .viewNumber = pr .viewNumber

matchingViewNumbersAndResults(Q , c)
∆
=

a (super)quorum of replies with matching view numbers

and results

∧ ∀ r ∈ Q :
∧ ∃ reply ∈ cCrtOpReplies[S ][c]: reply.src = r

∧ ∀ p ∈ Q : ∃ rr , pr ∈ cCrtOpReplies[S ][c] :
∧ rr .src = r
∧ pr .src = p
∧ rr .viewNumber = pr .viewNumber
∧ rr .res = pr .res

IR Client received enough responses to decide

what to do with the operation

ClientDecideOp(c)
∆
=

∧ cCrtOp[S ][c] 6= 〈〉
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I. The IR Client got a simple quorum of replies

∧ ∨ ∃Q ∈ Quorums :
∧ ∀ r ∈ Q :
∃ reply ∈ cCrtOpReplies[S ][c] : reply .src = r

∧ ∨ ∧ cCrtOp[S ][c].type = “Inconsistent”
∧ matchingViewNumbers(Q , c)
∧ aSuccessful ′ = aSuccessful ∪

{[mid 7→ [cid 7→ c,
msgid 7→ cMsgCounter [S ][c]],

op 7→ cCrtOp[S ][c]]}
∧ SuccessfulInconsistentOp(cCrtOp[S ][c])
∧ Send([type 7→ “FINALIZE”,

id 7→ [cid 7→ c, msgid 7→ cMsgCounter [S ][c]],
op 7→ cCrtOp[S ][c]])

∧ unchanged 〈cCrtOpToFinalize〉

∨ ∧ cCrtOp[S ][c].type = “Consensus”
∧ let res

∆
= if matchingViewNumbersAndResults(Q , c)

then
choose result ∈
{res ∈ Results :
∃ reply ∈ cCrtOpReplies[S ][c] :
∧ reply .src ∈ Q
∧ reply .res = res} : true

else
Decide(cCrtOpReplies[S ][c])

in
∧ Send([type 7→ “FINALIZE”,

id 7→ [cid 7→ c, msgid 7→ cMsgCounter [S ][c]],
op 7→ cCrtOp[S ][c],
res 7→ res])

∧ cCrtOpToFinalize ′ = [cCrtOp except ! [S ][c] = cCrtOp[S ][c]]
∧ unchanged 〈aSuccessful〉

II . The IR Client got super quorum of responses

∨ ∃SQ ∈ SuperQuorums :
∧ ∀ r ∈ SQ :
∃ reply ∈ cCrtOpReplies[S ][c] : reply .src = r

∧ cCrtOp[S ][c].type = “Consensus” only care if consensus op

∧ matchingViewNumbersAndResults(SQ , c)
∧ let res

∆
= choose result ∈

{res ∈ Results :
∃ reply ∈ cCrtOpReplies[S ][c] :
∧ reply .src ∈ SQ
∧ reply .res = res} : true
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in
∧ Send([type 7→ “FINALIZE”,

id 7→ [cid 7→ c, msgid 7→ cMsgCounter [S ][c]],
op 7→ cCrtOp[S ][c],
res 7→ res])

∧ aSuccessful ′ = aSuccessful ∪
{[mid 7→ [cid 7→ c,

msgid 7→ cMsgCounter [S ][c]],
op 7→ cCrtOp[S ][c],
res 7→ res]}

∧ SuccessfulConsensusOp(cCrtOp[S ][c], res)
∧ unchanged 〈cCrtOpToFinalize〉

∧ cCrtOp′ = [cCrtOp except ! [S ][c] = 〈〉]
∧ cCrtOpReplies ′ = [cCrtOpReplies except ! [S ][c] = {}]
∧ unchanged 〈cMsgCounter , cState, cCrtOpConfirms, rVars, gViewChangesNo〉

Client received a confirm

ClientReceiveConfirm(c)
∆
=

∃msg ∈ sentMsg [S ] :
∧msg .type = “CONFIRM”
∧ cCrtOpToFinalize[S ][c] 6= 〈〉
∧msg .id = [cid 7→ c, msgid 7→ cMsgCounter [S ][c]] reply to c’s request for crt op

∧ cCrtOpConfirms ′ = [cCrtOpConfirms except ! [S ][c] = @ ∪
{[viewNumber 7→ msg .v ,

res 7→ msg .res,
src 7→ msg .src]}]

∧ unchanged 〈cCrtOp, cCrtOpReplies, cCrtOpToFinalize, cMsgCounter ,
cState, rVars, aVars, oVars〉

An operation is finalized by a client and result returned to the application

ClientFinalizedOp(c)
∆
=

∧ cCrtOpToFinalize[S ][c] 6= 〈〉
∧ ∃Q ∈ Quorums :

IR client received a quorum of responses

∧ ∀ r ∈ Q :
∃ reply ∈ cCrtOpConfirms[S ][c] : reply .src = r

∧ let
take the result in the biggest view number

reply
∆
= choose reply ∈ cCrtOpConfirms[S ][c] :

¬∃ rep ∈ cCrtOpConfirms[S ][c] :
rep.viewNumber > reply .viewNumber

in
∧ aSuccessful ′ = aSuccessful ∪

{[mid 7→ [cid 7→ c,
msgid 7→ cMsgCounter [S ][c]],
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op 7→ cCrtOpToFinalize[S ][c],
res 7→ reply .res]}

∧ SuccessfulConsensusOp(cCrtOp[S ][c], reply .res) respond to app

∧ cCrtOpToFinalize ′ = [cCrtOpToFinalize except ! [S ][c] = 〈〉]
∧ cCrtOpConfirms ′ = [cCrtOpConfirms except ! [S ][c] = {}]
∧ unchanged 〈rVars, cCrtOp, cCrtOpReplies, cMsgCounter , cState, oVars〉

Client fails and looses all data

ClientFail(c)
∆
=

∧ cState ′ = [cState except ! [S ][c] = “FAILED”]
∧ cMsgCounter ′ = [cMsgCounter except ! [S ][c] = 0]
∧ cCrtOp′ = [cCrtOp except ! [S ][c] = 〈〉]
∧ cCrtOpReplies ′ = [cCrtOpReplies except ! [S ][c] = {}]
∧AppClientFail
∧ unchanged 〈rVars, aVars, oVars〉

Client recovers

ClientRecover(c)
∆
= false

Replica Actions

Replica sends a reply

ReplicaReceiveRequest(r)
∆
=

∃msg ∈ sentMsg [S ] :
∧msg .type = “REQUEST”
∧ ¬∃ rec ∈ rRecord [S ][r ] : rec.msgid = msg .id

not alredy replied for this op

∧ ∨ ∧msg .op.type = “Inconsistent”
∧ Send([type 7→ “REPLY”,

id 7→ msg .id ,
v 7→ rViewNumber [S ][r ],
src 7→ r ])

∧ rRecord ′ = [rRecord except ! [S ][r ] = @ ∪ {[msgid 7→ msg .id ,
op 7→ msg .op,
status 7→ “TENTATIVE”]}]

∨ ∧msg .op.type = “Consensus”
∧ let res

∆
= ExecConsensus(msg .op)

in
∧ Send([type 7→ “REPLY”,

id 7→ msg .id ,
v 7→ rViewNumber [S ][r ],
res 7→ res,
src 7→ r ])

∧ rRecord ′ = [rRecord except ! [S ][r ] = @ ∪ {[msgid 7→ msg .id ,
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op 7→ msg .op,
res 7→ res,
status 7→ “TENTATIVE”]}]

∧ unchanged 〈rState, rViewNumber , rViewReplies, cVars, aVars, gViewChangesNo〉

Replica receive a message from an IR Client to finalize an op

For inconsistent oprations the replica sends < CONFIRM > and

executes the operation.

TODO : Write this more compact

ReplicaReceiveFinalize(r)
∆
=

∃msg ∈ sentMsg [S ] :
∧msg .type = “FINALIZE”
∧ ∨ ∧msg .op.type = “Inconsistent”

∧ Send([type 7→ “CONFIRM”,
v 7→ rViewNumber [S ][r ],
id 7→ msg .id ,
op 7→ msg .op,
src 7→ r ])

∧ ∨ ∃ rec ∈ rRecord [S ][r ] :
∧ rec.msgid = msg .id
∧ rec.op = msg .op Replica knows of this op

∧ if rec.status 6= “FINALIZED”
then ExecInconsistent(msg .op)
else true

∧ rRecord ′ = [rRecord except ! [S ][r ] = (@ \ {rec}) ∪
{[msgid 7→ msg .id ,

op 7→ msg .op,
status 7→ “FINALIZED”]}]

∨ ∧ ¬∃ rec ∈ rRecord [S ][r ] : Replica didn’t hear of this op

∧ rec.msgid = msg .id
∧ rec.op = msg .op
∧ rRecord ′ = [rRecord except ! [S ][r ] = @ ∪

{[msgid 7→ msg .id ,
op 7→ msg .op,
status 7→ “FINALIZED”]}]

∧ ExecInconsistent(msg .op)
∨ ∧msg .op.type = “Consensus”
∧ ∨ ∧ ∃ rec ∈ rRecord [S ][r ] :

∧ rec.msgid = msg .id
∧ rec.op = msg .op Replica knows of this op

∧ ∨ ∧ rec.status = “TENTATIVE” Operation tentative

∧ rRecord ′ = [rRecord except ! [S ][r ] = (@ \ {rec}) ∪
{[msgid 7→ msg .id ,

op 7→ msg .op,
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res 7→ msg .res,
status 7→ “FINALIZED”]}]

∧ Send([type 7→ “CONFIRM”,
v 7→ rViewNumber [S ][r ],
id 7→ msg .id ,
op 7→ msg .op,
res 7→ msg .res,
src 7→ r ])

∧ if rec.res 6= msg.res

then UpdateConsensus(msg.op, msg.res)

else true

∨ ∧ rec.status = “FINALIZED” Operation already finalized (view change happened in the meantime)

∧ Send([type 7→ “CONFIRM”,
v 7→ rViewNumber [S ][r ],
id 7→ msg .id ,
op 7→ msg .op,
res 7→ rec.res,
src 7→ r ])

∧ unchanged 〈rRecord〉
∨ ∧ ¬∃ rec ∈ rRecord [S ][r ] : Replica didn’t hear of this op

∧ rec.msgid = msg .id
∧ rec.op = msg .op
∧ rRecord ′ = [rRecord except ! [S ][r ] = @ ∪

{[msgid 7→ msg .id ,
op 7→ msg .op,
res 7→ msg .res,
status 7→ “FINALIZED”]}]

∧ Send([type 7→ “CONFIRM”,
v 7→ rViewNumber [S ][r ],
id 7→ msg .id ,
op 7→ msg .op,
res 7→ msg .res,
src 7→ r ])

∧ ExecuteAndUpdateConsensus(msg.op, msg.res)

∧ unchanged 〈rState, rViewNumber , rViewReplies, cVars, aVars, gViewChangesNo〉

A replica starts the view change procedure

supports concurrent view changes (id by src)

ReplicaStartViewChange(r)
∆
=

∧ Send([type 7→ “START-VIEW-CHANGE”,
v 7→ rViewNumber [r ],
src 7→ r ])

∧ rState ′ = [rState except ! [r ] = “RECOVERING”]
∧ unchanged 〈rViewNumber , rViewReplies, rRecord , cVars, aVars〉
∧ gViewChangesNo < max vc BOUND on number of view changes
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∧ gViewChangesNo′ = gViewChangesNo + 1

A replica received a message to start view change

ReplicaReceiveStartViewChange(r)
∆
=

∧ ∃msg ∈ sentMsg [S ] :
∧msg .type = “START-VIEW-CHANGE”
∧ let v new

∆
=

if msg .v > rViewNumber [r ] then msg .v
else rViewNumber [S ][r ]

in
∧ ¬∃m ∈ sentMsg [S ] : not already sent (just to bound the model checker)

∧m.type = “DO-VIEW-CHANGE”
∧m.v ≥ msg .v
∧m.dst = msg .src
∧m.src = r
∧ Send([type 7→ “DO-VIEW-CHANGE”,

v 7→ v new + 1,
r 7→ rRecord [r ],
src 7→ r ,
dst 7→ msg .src])

∧ rViewNumber ′ = [rViewNumber except ! [S ][r ] = v new + 1]
∧ rState ′ = [rState except ! [S ][r ] = “VIEW-CHANGING”]
∧ unchanged 〈cVars, rRecord , rViewReplies, aVars, gViewChangesNo〉

Replica received DO-VIEW-CHANGE message

ReplicaReceiveDoViewChange(r)
∆
=

∧ ∃msg ∈ sentMsg [S ] :
∧msg .type = “DO-VIEW-CHANGE”
∧msg .dst = r
∧msg .v > rViewNumber [r ]
∧ rViewReplies ′ = [rViewReplies except ! [r ] = @ ∪

{[type 7→ “do-view-change”,
viewNumber 7→ msg .v ,
r 7→ msg .r ,
src 7→ msg .src]}]

∧ unchanged 〈cVars, rViewNumber , rRecord , rState, aVars, oVars〉

A replica received enough view change replies to start processing in the new view

ReplicaDecideNewView(r)
∆
=

∧ ∃Q ∈ Quorums :
∧ ∀ rep ∈ Q : ∃ reply ∈ rViewReplies[r ] : ∧ reply .src = rep

∧ reply .type = “do-view-change”
received at least a quorum of replies

∧ let recoveredConensusOps a
∆
=

any consensus operation found in at least a majority of a Quorum

{x ∈ union {y .r : y ∈ {z ∈ rViewReplies[S ][r ] : z .src ∈ Q}} :
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∧ x [2].type = “Consensus”
∧ ∃P ∈ SuperQuorums :
∀ rep ∈ Q ∩ P :
∃ reply ∈ rViewReplies[r ] :
∧ reply .src = rep
∧ x ∈ reply .r} same op, same result

recoveredConensusOps b
∆
= TODO : what result? from the app?

the rest of consensus ops found in at least one record (discard the result)

{〈z [1], z [2]〉 :
z ∈ {x ∈ union {y .r : y ∈ {z ∈ rViewReplies[S ][r ] : z .src ∈ Q}} :
∧ x [2].type = “Consensus”
∧ ¬x ∈ recoveredConensusOps a}}

recoveredInconsistentOps c
∆
=

any inconsistent operation found in any received record (discard the result)

{〈z [1], z [2]〉 :
z ∈ {x ∈ union {y .r : y ∈ {z ∈ rViewReplies[S ][r ] : z .src ∈ Q}} :

x [2].type = “Inconsistent”}}
in

∧AppRecoverOpsResults(recoveredConensusOps a)

∧AppRecoverOps(recoveredConensusOps b)

∧AppRecoverOps(recoveredInconsistentOps c)

∧ rRecord ′ = [rRecord except ! [S ][r ] = @ ∪ recoveredConensusOps a
∪ recoveredConensusOps b
∪ recoveredInconsistentOps c]

∧ let v new
∆
=

max view number received

choose v ∈ {x .viewNumber : x ∈ rViewReplies[r ]} :
∀ y ∈ rViewReplies[r ] :

y .viewNumber ≤ v
in
∧ Send([type 7→ “START-VIEW”,

v 7→ v new ,
src 7→ r ])

∧ rViewNumber ′ = [rViewNumber except ! [r ] = v new ]
∧ rViewReplies ′ = [rViewReplies except ! [r ] = {}]
∧ unchanged 〈rState, cVars, aVars, gViewChangesNo〉

A replica receives a start view message

ReplicaReceiveStartView(r)
∆
=

∧ ∃msg ∈ sentMsg :
∧msg .type = “START-VIEW”
∧msg .v ≥ rViewNumber [r ]
∧msg .src 6= r don’t reply to myself

∧ Send([type 7→ “START-VIEW-REPLY”,
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v 7→ msg .v ,
src 7→ r ,
dst 7→ msg .src])

∧ rViewNumber ′ = [rViewNumber except ! [r ] = msg .v ]
∧ rState ′ = [rState except ! [r ] = “NORMAL”]
∧ unchanged 〈rRecord , rViewReplies, cVars, aVars, gViewChangesNo〉

ReplicaReceiveStartViewReply(r)
∆
=

∧ ∃msg ∈ sentMsg :
∧msg .type = “START-VIEW-REPLY”
∧msg .dst = r
∧msg .v > rViewNumber [r ] receive only if bigger than the last view I was in

∧ rViewReplies ′ = [rViewReplies except ! [S ][r ] = @ ∪
{[type 7→ “start-view-reply”,

viewNumber 7→ msg .v ,
r 7→ {},
src 7→ msg .src]}]

∧ unchanged 〈rRecord , rState, rViewNumber , cVars, aVars, oVars〉

ReplicaRecover(r)
∆
= we received enough START-VIEW-REPLY messages

∃Q ∈ Quorums :
∧ r ∈ Q
∧ ∀ p ∈ Q : ∨ p = r

∨ ∧ p 6= r
∧ ∃ reply ∈ rViewReplies[S ][r ] : ∧ reply .src = p

∧ reply .type = “start-view-reply”
∧ rViewReplies ′ = [rViewReplies except ! [S ][r ] = {}]
∧ rState ′ = [rState except ! [r ] = “NORMAL”]
∧ unchanged 〈rRecord , rViewNumber , cVars, aVars, oVars〉

ReplicaResumeViewChange(r)
∆
= TODO : On timeout

false

A replica fails and looses everything

ReplicaFail(r)
∆
= TODO : check cardinality

∧ rState ′ = [rState except ! [S ][r ] = “FAILED”]
∧ rRecord ′ = [rRecord except ! [S ][r ] = {}]
∧ rViewNumber ′ = [rViewNumber except ! [r ] = 0] \ * TODO : check what happens if we loose the view number

∧ rViewReplies ′ = [rViewReplies except ! [S ][r ] = {}]
∧ unchanged 〈rViewNumber , cVars, aVars, oVars〉
∧ Cardinality({re ∈ Replicas :

We assume less than f replicas are allowed to fail

∨ rState[S ][re] = “FAILED”
∨ rState[S ][re] = “RECOVERING”}) < f

High-Level Actions

35



ClientAction(c)
∆
=

∨ ∧ cState[c] = “NORMAL”
∧ ∨ ClientRequest(c) \ * some client tries to replicate commit an operation

∨ ClientReceiveReply(c) some client receives a reply from a replica

∨ ClientReceiveConfirm(c) some client receives a confirm from a replica

∨ ClientFail(c) \ * some client fails

∨ ClientDecideOp(c) an operation is successful at some client

∨ ClientFinalizedOp(c) \ * an operation was finalized at some client

∨ ∧ cState[c] = “FAILED”
∧ ∨ ClientRecover(c)

ReplicaAction(r)
∆
=

∨ ∧ rState[S ][r ] = “NORMAL”
∧ ∨ ReplicaReceiveRequest(r) some replica sends a reply to a REQUEST msg

∨ ReplicaReceiveFinalize(r)
∨ ReplicaReceiveStartViewChange(r)

∨ ReplicaReceiveStartView(r)

∨ ReplicaFail(r) \ * some replica fails

∨ ∧ rState[S ][r ] = “FAILED”

∧ ∨ ReplicaStartViewChange(r) \ * some replica starts to recover

∨ ∧ rState[r ] = “RECOVERING” \ * just to make it clear

∧ ∨ ReplicaReceiveDoViewChange(r)

∨ ReplicaDecideNewView(r)

∨ ReplicaReceiveStartViewReply(r)

∨ ReplicaRecover(r)

∨ ∧ rState[S ][r ] = “VIEW-CHANGING”

∧ ∨ ReplicaReceiveStartViewChange(r)

∨ ReplicaReceiveStartView(r)

∨ ReplicaResumeViewChange(r) \ * some timeout expired and view change not finished

∨ ReplicaFail(r)

Next
∆
=
∨ ∃ c ∈ Clients : ClientAction(c)
∨ ∃ r ∈ Replicas : ReplicaAction(r)

Spec
∆
= Init ∧2[Next ]vars

FaultTolerance
∆
=

∧ ∀ successfulOp ∈ aSuccessful , Q ∈ Quorums :
(∀ r ∈ Q : rState[S ][r ] = “NORMAL” ∨ rState[S ][r ] = “VIEW-CHANGING”)

⇒ (∃ p ∈ Q : ∃ rec ∈ rRecord [S ][p] :
∧ successfulOp.msgid = rec.msgid
∧ successfulOp.op = rec.op) Not necessarily same result

∧ ∀finalizedOp ∈ aSuccessful , Q ∈ Quorums :
(∀ r ∈ Q : rState[r ] = “NORMAL” ∨ rState[r ] = “VIEW-CHANGING”)

⇒ (∃P ∈ SuperQuorums :
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∀ p ∈ Q ∩ P :
∃ rec ∈ rRecord [p] :

finalizedOp = rec)

Inv
∆
= TypeOK ∧ FaultTolerance
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module TAPIR

This is a TLA+ specification of the TAPIR algorithm.

extends FiniteSets, Naturals, TLC , TLAPS

Max (S )
∆
= if S = {} then 0 else choose i ∈ S : ∀ j ∈ S : j ≤ i

TAPIR constants:

1. Shards: function from shard id to set of replica ids in the shard

2. Transactions: set of all possible transactions

3. nr shards: number of shards

constants Shards, Transactions, NrShards
Note: assume unique number ids for replicas

IR constants & variables (description in the IR module)

constants Clients, Quorums, SuperQuorums,
max vc, max req , f

variables rState, rRecord , rViewNumber , rViewReplies, sentMsg , cCrtOp,
cCrtOpToFinalize, cMsgCounter , cCrtOpReplies, cCrtOpConfirms,
cState, aSuccessful , gViewChangesNo

irReplicaVars
∆
= 〈rState, rRecord , rViewNumber , rViewReplies〉

irClientVars
∆
= 〈cCrtOp, current operation at a client

cCrtOpReplies, current operation replies

cMsgCounter ,
cState,
cCrtOpToFinalize,
cCrtOpConfirms〉 Client variables.

irAppVars
∆
= 〈aSuccessful〉 Application variables

irOtherVars
∆
= 〈sentMsg , gViewChangesNo〉 Other variables.

TAPIR Variables/State: 1. State at each replica:

rPrepareTxns = List of txns this replica is prepared to commit

rTxnsLog = Log of committed and aborted txns in ts order rStore = Versioned store

rBkpTable = Table of txns for which this replica

is the bkp coordinator

2. State of communication medium: sentMsg = sent (and duplicate) messages

3. State at client: cCrtTxn = crt txn requested by the client

TAPIR variables & data structures

variables rPreparedTxns, rStore, rTxnsLogAborted , rTxnsLogCommited ,
rClock , cCrtTxn, cClock

tapirReplicaVars
∆
= 〈rPreparedTxns, rStore, rTxnsLogAborted , rTxnsLogCommited ,

rClock〉
tapirClientVars

∆
= 〈cCrtTxn, cClock〉
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StoreEntry
∆
= [vs : Nat , val : Nat ] vs = version

Store
∆
= [key : Nat ,

entries : subset StoreEntry ,
latestVs : Nat ,
latestVal : Nat ]

TransactionTs
∆
= [cid : Clients, clock : Nat ] Timestamp

ReadSet
∆
= [key : Nat , val : Nat , vs : Nat ]

WriteSet
∆
= [key : Nat , val : Nat ]

Transaction
∆
= [rSet : subset ReadSet ,

wSet : subset WriteSet ,
shards : subset Nat ]

TypeOK
∆
=

∧ rStore ∈ [union {Shards[i ] : i ∈ 1 . . NrShards} → subset Store]
∧ rPreparedTxns ∈ [union {Shards[i ] : i ∈ 1 . . NrShards} → subset Transaction]
∧ rTxnsLogAborted ∈ [union {Shards[i ] : i ∈ 1 . . NrShards} → subset Transaction]
∧ rTxnsLogCommited ∈ [union {Shards[i ] : i ∈ 1 . . NrShards} → subset Transaction]

TAPIRResults
∆
= {“Prepare-OK”, “Retry”, “Prepare-Abstain”, “Abort”}

TAPIROpType
∆
= {“Prepare”, “ABORT”, “COMMIT”}

TAPIROpBody
∆
= [opType : TAPIROpType, txn : Transaction]

TAPIRClientFail
∆
= true state we lose at the app level

TAPIRReplicaFail
∆
= true state we lose at the app level

TAPIR implementation of IR interface

TAPIRExecInconsistent(op)
∆
= true

TAPIRExecConsensus(op)
∆
= if op.type = “Consensus” then “Prepare-OK” else “Abort”

TAPIRDecide(results)
∆
= true

TAPIRMerge(d , u)
∆
= true

TAPIRSync(records)
∆
= true

TAPIRSuccessfulInconsistentOp(op)
∆
= true

TAPIRSuccessfulConsensusOp(op, res)
∆
= true

Initialize for all shards

InitIR
∆
=

∧ rState = [s ∈ 1 . . NrShards 7→ [r ∈ Shards[s] 7→ “NORMAL”]]
∧ rRecord = [s ∈ 1 . . NrShards 7→ [r ∈ Shards[s] 7→ {}]]
∧ rViewNumber = [s ∈ 1 . . NrShards 7→ [r ∈ Shards[s] 7→ 0]]
∧ rViewReplies = [s ∈ 1 . . NrShards 7→ [r ∈ Shards[s] 7→ {}]]
∧ sentMsg = [s ∈ 1 . . NrShards 7→ {}]
∧ cCrtOp = [s ∈ 1 . . NrShards 7→ [c ∈ Clients 7→ 〈〉]]
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∧ cCrtOpToFinalize = [s ∈ 1 . . NrShards 7→ [c ∈ Clients 7→ 〈〉]]
∧ cMsgCounter = [s ∈ 1 . . NrShards 7→ [c ∈ Clients 7→ 0]]
∧ cCrtOpReplies = [s ∈ 1 . . NrShards 7→ [c ∈ Clients 7→ {}]]
∧ cCrtOpConfirms = [s ∈ 1 . . NrShards 7→ [c ∈ Clients 7→ {}]]
∧ cState = [c ∈ Clients 7→ “NORMAL”]
∧ aSuccessful = {}
∧ gViewChangesNo = [s ∈ 1 . . NrShards 7→ 0]

IR instance per shard TODO : modify replica also

IR(s)
∆
= instance IR consensus with AppClientFail ← TAPIRClientFail ,

AppReplicaFail ← TAPIRReplicaFail ,
OpBody ← TAPIROpBody ,
ExecInconsistent ← TAPIRExecInconsistent ,
ExecConsensus ← TAPIRExecConsensus,
Merge ← TAPIRMerge,
Sync ← TAPIRSync,
SuccessfulInconsistentOp ← TAPIRSuccessfulInconsistentOp,
SuccessfulConsensusOp ← TAPIRSuccessfulConsensusOp,
Decide ← TAPIRDecide,
Results ← TAPIRResults,
Replicas ← Shards[s],
Quorums ← Quorums[s],
SuperQuorums ← SuperQuorums[s],
S ← s

TAPIR messages

Message
∆
=

[type : {“READ”},
key : Nat ,
dst : union Shards]

∪
[type : {“READ-REPLY”},
key : Nat ,
val : Nat ,
vs : Nat , version

dst : Clients]
∪

[type : {“READ-VERSION”},
key : Nat ,
vs : Nat ,
dst : union Shards]

∪
[type : {“READ-VERSION-REPLY”},
key : Nat ,
vs : Nat ,
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dst : Clients]

InitTAPIR
∆
= ∧ cCrtTxn = [c ∈ Clients 7→ 〈〉]
∧ cClock = [c ∈ Clients 7→ 0]
∧ rPreparedTxns = [s ∈ 1 . . NrShards 7→ [r ∈ Shards[s] 7→ {}]]
∧ rStore = [r ∈ union {Shards[i ] : i ∈ 1 . . NrShards} 7→ {}]
∧ rTxnsLogAborted = [s ∈ 1 . . NrShards 7→ [r ∈ Shards[s] 7→ {}]]

∧ rClock = [s ∈ 1 . . NrShards 7→ [r ∈ Shards[s] 7→ 0]]

Init
∆
= InitIR ∧ InitTAPIR

Tapir replica actions
TAPIRReplicaReceiveRead(r)

∆
= true

TAPIRReplicaAction(r)
∆
=

∨ ∧ rState[r ] = “NORMAL”

∧ ∨ TAPIRReplicaReceiveRead(r)

Tapir client actions

TAPIRClientExecuteTxn(c)
∆
=

first, resolve all reads (read from any replica and get the vs)

then send prepares in all shard involved by seting the cCrtOp in the

respective IR shard instance

TODO : for now just simulate this, pick a transaction from

transaction pool, get some versions from the replica

stores

∧ cCrtTxn[c] = 〈〉
∧ ∃ t ∈ Transactions :
let rSet

∆
= {rse ∈ ReadSet :

∧ ∃ trse ∈ t .rSet : rse = trse
∧ let

r
∆
= Max ({r ∈ Shards[(rse.key%NrShards) + 1] :

∃ se ∈ rStore[r ] : rse.key = se.key})
in
∧ r 6= 0
∧ ∃ se ∈ rStore[r ] :
∧ rse.key = se.key
∧ rse.val = se.latestVal
∧ rse.vs = se.latestVs

}
shards

∆
= {s ∈ 1 . . NrShards :
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∨ ∃ trse ∈ t .rSet : s = (trse.key%NrShards) + 1
∨ ∃ twse ∈ t .wSet : s = (twse.key%NrShards) + 1}

in
∧ Cardinality(rSet) = Cardinality(t .rSet) found all the reads

∧ cCrtTxn ′ = [cCrtTxn except ! [c] = [rSet 7→ rSet ,
wSet 7→ t .wSet ,
shards 7→ shards]]

∧ unchanged 〈irReplicaVars, irClientVars, irOtherVars, irAppVars,
tapirReplicaVars, cClock〉

TAPIRClientPrepareTxn(c)
∆
=

∧ cCrtTxn[c] 6= 〈〉
∧ ∃ s ∈ cCrtTxn[c].shards : prepare in shard s

- ok if already prepared

∧ IR(s) !ClientRequest(c, [type 7→ “Consensus”,
body 7→ 〈“Prepare”, cCrtTxn〉])

∧ unchanged 〈irReplicaVars, irAppVars,
cCrtOpReplies,
cCrtOpConfirms,
cCrtOpToFinalize,
gViewChangesNo,
cState, tapirClientVars, tapirReplicaVars〉

TAPIRClientAction(c)
∆
=

∨ ∧ cState[c] = “NORMAL”
∧ ∨ TAPIRClientExecuteTxn(c) for now just simulate this

(don’t send explicit READ messages)

∨ TAPIRClientPrepareTxn(c)
∨ 2PC (c)

High-Level Actions

Next
∆
=

∧ ∨ ∃ c ∈ Clients : TAPIRClientAction(c)
∨ ∧ ∃ s ∈ 1 . . NrShards : IR(s) !Next
∧ unchanged 〈tapirClientVars, tapirReplicaVars〉

Inv
∆
= Cardinality(aSuccessful) < 2
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