SwitchML Scaling Distributed Machine Learning with In-Network Aggregation

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, Peter Richtarik

Machine Learning

Increasingly sophisticated models

Increasingly larger datasets

Innovation fueled by leaps in (costly) infrastructure:

Clusters with hundreds of machines,
each with many HW accelerators (GPUs)

Compute requirements doubling every 3 months!

Training models is still very time-consuming: days or even weeks!

Scaling Machine Learning

Make efficient use of combined resources at multiple worker nodes

Can the network be the ML accelerator?

Worker 1

Worker 2

Worker 1

Worker 2

Very intensive communication in all-to-all fashion! Network increasingly the bottleneck to training speed

Parameter Server (PS) and All-Reduce (ring)

A closer look at model synchronization

Programmable data plane

6.5 Tbps

100 Gbps line rate processing

The network is the ML accelerator

SwitchML: Co-design ML and networking

Challenges

Limited computation
Limited storage

No floating points

6.5 Tbps programmable data plane

Design

- Combined switch-host architecture
- Pool-based streaming aggregation
- Quantized integer operations
- Failure-recovery protocol
- In-switch RDMA implementation

Combined switch-host architecture

Combined switch-host architecture

Combined switch-host architecture

Worker 1 Worker 2 Worker 3 Worker 4

Quantization allows training to similar accuracy in a similar number of iterations as an unquantized network

JVVILCII

How large a packet can a switch process?

256B of payload per packet → **75.7%** network efficiency

How large a packet can a switch process?

1024B of payload per packet → **92.6**% network efficiency

A glimpse of the evaluation

Check the paper for an extensive evaluation!

Implementation and evaluation

• Switch program written for Intel Tofino

End-host C++ library providing a familiar all-reduce API

Integrated with ML frameworks

- Standard ML benchmarks
- Microbenchmarks for aggregation performance

How much faster is SwitchML?

SwitchML provides a speedup in training throughput up to 2.27x on 100Gbps networks. Speedup is higher with faster GPUs that reduce the computation/communication ratio.

How does SwitchML scale with the number of workers?

SwitchML performance does not depend on the number of workers.

Summary

- Use in-network aggregation to synchronize model parameters updates
 - Reduce network traffic volume and latency

- SwitchML speeds up training up to 2.27x with real-world DNN benchmarks
- Aggregation time does not depend on the number of workers

github.com/p4lang/p4app-switchML

