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I\/\achine Increasingly Increasingly

sophisticated larger

Learni Nng models datasets
)

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,
each with many HW accelerators (GPUs)

Compute requirements doubling every 3 months!

Training models is still very time-consuming: days or even weeks!
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Scaling

Machine
| earni gle Make efficient use of combined
resources at multiple worker nodes

% of training time spent in communication

I 8xP100, 100GbE 8xP100, 10GbE

Can the network be
the ML accelerator?

DeeplLight LSTM BERT VGG19 UGATIT NCF SSD ResNet-50



Distributed ML (data-parallel)
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Distributed ML (data-parallel)
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Distributed ML (data-parallel)
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Distributed ML (data-parallel)

~100 ms Worker 1 Worker2 ~1 OO ms
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100s of MBs to GBs
in
each iteration
- ~800-1000ms




Distributed ML (data-parallel)

Worker 1 Worker 2
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Problem:
Very intensive communication in all-to-all fashion!
Network increasingly the bottleneck to training speed
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Parameter Server (PS) and All-Reduce (ring)
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Worker 1 updates Worker 2 updates Worker N updates Worker 1 updates Worker 2 updates Worker N updates



A closer look at model synchronization

Worker 1 Worker 2 Worker 3 Worker 4

If only | could

—_— R\ /'o help...

Distributed ML scales
communication costs

Switch o
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The network is the ML accelerator

Worker 1
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Worker 2

Worker 3

Worker 4
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Aggregate model \

Switch

updates in-network
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SwitchML: Co-design ML and networking

Challenges | Design
< /> Limited computation P
Iil Limited storage S |

 Combined switch-host architecture

* Pool-based streaming aggregation

% No floating points Quantized integer operations

6.5 Tbps * Failure-recovery protocol

@ Packet loss orogrammable
data plane

In-switch RDMA implementation
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Streaming aggregation
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Streaming aggregation
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Streaming aggregation
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Streaming aggregation
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Streaming aggregation
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Streaming aggregation
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Streaming aggregation
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Check the paper for

fault tolerance mechanism!
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Combined switch-host architecture

Worker 1

Quantization &
failure recovery

Worker 2

Quantization &
failure recovery

Worker 3

Worker 4

Quantization &
failure recovery
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Combined switch-host architecture

Worker 1 Worker 2 Worker 3 Worker 4
Block quantization
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Combined switch-host architecture

Worker 1 Worker 2 Worker 3 Worker 4

Quantization allows training to similar accuracy in a similar
number of iterations as an unquantized network
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How large a packet can a switch process?

256B of payload per packet = 75.7% network efficiency

Biliit ik Bl

17



How large a packet can a switch process?

1024B of payload per packet = 92.6% network efficiency
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A glimpse of the evaluation

Check the paper for an extensive evaluation!



Implementation and evaluation

 Switch program written for Intel Tofino p

2)DPDK
RDMA

Remote Direct Memory Access

* End-host C++ library providing a familiar all-reduce API

* Integrated with ML frameworks

O PyTorch ¥ ) ’
Tensor '

e Standard ML benchmarks

* Microbenchmarks for aggregation performance
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How much faster is SwitchML?

SwitchML provides a speedup in training throughput up to 2.27x on 100Gbps networks.
Speedup is higher with faster GPUs that reduce the computation/communication ratio.

100Gbps GPU 10x - 100Gbps
i SwitchML/NCCL-RDMA | 2.5 - B SwitchML/NCCL-RDMA

2.5 2.27

DeeplLight LSTM BERT NCF " DeepLight  LSTM BERT



How does SwitchML scale with the number of workers?

SwitchML performance does not depend on the number of workers.

Bl SwitchML RDMA 256 @ NCCL-RDMA - Max RDMA goodput
3000

Millions of Aggregated Tensor
Elements per second

8 16
Number of workers
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Summary

* Use in-network aggregation to
synchronize model parameters updates

* Reduce network traffic volume and latency

* SwitchML speeds up training up to 2.27x
with real-world DNN benchmarks

* Aggregation time does not depend on the
number of workers
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