
RAMBDA: RDMA-driven Acceleration Framework for
Memory-intensive µs-scale Datacenter Applications

Yifan Yuan†∗§, Jinghan Huang†,Yan Sun†, Tianchen Wang†, Jacob Nelson‡, Dan R. K. Ports‡,
Yipeng Wang∗, Ren Wang∗, Charlie Tai∗, Nam Sung Kim†

†University of Illinois at Urbana-Champaign, ∗Intel Labs, ‡Microsoft Research
{yifan.yuan, yipeng1.wang, ren.wang, charlie.tai}@intel.com

{jinghan4, yans3, tw12, nskim}@illinois.edu {jacob.nelson, dan.ports}.microsoft.com

Abstract—Responding to the “datacenter tax” and “killer
microseconds” problems for memory-intensive datacenter
applications, diverse solutions including Smart NIC-based ones
have been proposed. Nonetheless, they often suffer from high
overhead of communications over network and/or PCIe links. To
tackle the limitations of the current solutions, this paper proposes
RAMBDA, a holistic network and architecture co-design solution
that leverages current RDMA and emerging cache-coherent off-
chip interconnect technologies. Specifically, RAMBDA consists of
four hardware and software components: (1) unified abstraction
of inter- and intra-machine communications synergistically
managed by one-sided RDMA write and cache-coherent memory
write; (2) efficient notification of requests to accelerators assisted
by cache coherence; (3) cache-coherent accelerator architecture
directly interacting with NIC; and (4) adaptive device-to-host
data transfer for modern server memory systems comprising
both DRAM and NVM exploiting state-of-the-art features in
CPUs and PCIe. We prototype RAMBDA with a commercial
system and evaluate three popular datacenter applications: (1)
in-memory key-value store, (2) chain replication-based distributed
transaction system, and (3) deep learning recommendation
model inference. The evaluation shows that RAMBDA provides
30.1∼69.1% lower latency, 0.2∼2.5× throughput, and ∼ 3×
higher energy efficiency than the current state-of-the-art solutions,
including Smart NIC. For those cases where RAMBDA performs
poorly, we also envision future architecture to improve it.

Index Terms—cache-coherent interconnects and accelerators,
RDMA, heterogeneous and disaggregated memory, datacenters

I. INTRODUCTION

Datacenter networks are evolving rapidly. 100 Gbps Ethernet
is widely deployed today, and so will be 400 Gbps Ethernet
soon [121]. To keep pace, a server may have to process
hundreds of millions of packets per second. However, single-
thread performance of CPUs has remained comparatively
stagnant, requiring the CPUs to spend more cores and their
cycles for network processing alone – a major component
of the “datacenter tax” [79]. For application processing,
accelerators can be used. Yet, conventional accelerators are
inefficient for processing many small tasks [147], and thus
unable to address “killer microsecond” problem [13, 110].

Current approaches use one of three strategies. (Tab. I).
First, kernel-bypass networking, using user-space network
stacks [15, 63, 71] or two-sided Remote Direct Memory Access
(RDMA) [75–78, 98], reduce packet processing overhead by
delivering data directly to user space, avoiding kernel crossings.

§This research was partially done when the first author was at UIUC.

Nonetheless, both user-space network stacks and application
processing tax server CPU cores [75–78, 98]. Second, one-
sided RDMA [27, 39, 111, 112, 118, 160, 161] allows clients
to bypass the server CPU and directly read or write server
memory. However, the limited semantics of one-sided RDMA
operations require multiple network round trips to serve a single
request from a client [19]. Finally, Smart NICs can perform
more sophisticated remote operations in a single network round
trip [7, 83, 94, 130, 154], offering higher execution and energy
efficiency than host CPUs [84, 94, 172]. Nevertheless, this
solution sometimes yields lower performance than the first
and second solutions [7, 116] for two reasons. First, cost,
power, and form factor constraints limit Smart NICs memory
capacity to O(10GB) [100], and applications that do not fit in
on-NIC memory must access main memory over slow PCIe
links [116]. This leads to significant performance degrada-
tion [19, 84, 94, 116, 141]. Note that many modern datacenter
applications have large working sets, often requiring not only
DRAM but also higher-density byte-addressable NVM (e.g.,
Intel Optane Persistent DIMM [67]) to cost-effectively provide
capacity [11, 18, 84]. Second, Smart NICs use specialized
accelerators and/or energy-efficient wimpy CPUs that are often
unable to run applications with high performance. As such,
processing must be partitioned and coordinated between Smart
NIC and the faster server CPU, but frequent communications
over slow PCIe links become a performance bottleneck.

As a result, system architects face a dilemma: whether to
use (many) expensive CPU cores for application processing,
or to suffer from the performance overhead incurred by
multiple round trips over network or PCIe links. This
paper proposes an alternative, RAMBDA that can efficiently
serve memory-intensive µs-scale datacenter applications.
Specifically, RAMBDA envisions a server with a standard
RDMA NIC (RNIC) and a cache-coherent accelerator
(cc-accelerator) [30, 69] connected to an cache-coherent
off-chip interconnect (cc-interconnect) such as CXL [33].
The cc-accelerator directly communicates with the RNIC
for efficient network and application processing with little
involvement of the server CPU. RAMBDA takes a modularized
approach – the cc-accelerator is a separate device, not
integrated with the RNIC – to allow the use of standard RNICs
and support application-specific customization of the cc-
accelerator. As such, RAMBDA is a cost-effective and efficient

TABLE I: Taxonomy of hardware-based µs-scale datacenter applications offloading/acceleration.

Optimization Net. Overhead PCIe Overhead CPU Overhead Flexibility Perf. Stability

Two-sided RDMA/kernel-bypass with multi-core [75–78, 98] Low Low High High Low
One-sided/mixed RDMA [27, 39, 111, 112, 118, 160, 161] High High Low Low Low
(Smart)NIC offloading [7, 19, 24, 83, 84, 94, 130, 136, 141, 145, 154] Low High Low High Low
RAMBDA Low Low Low High High

approach for accelerating a broader range of applications. To
our knowledge, RAMBDA is the first work to explore the role
of a cc-accelerator for end-to-end datacenter applications.

RAMBDA consists of four logically-coupled software and
hardware components. Specifically, we propose:
• A unified abstraction for inter- and intra-machine

communications, using lockless ring buffers to facilitate
inter-machine communications with one-sided RDMA write
and CPU-accelerator communications with load/store;

• A fast and efficient mechanism to notify the cc-accelerator
of requests, exploiting its access to coherence information;

• A cc-accelerator architecture for processing the requests and
handling RNIC-CPU-accelerator interactions; and

• An adaptive device-to-host data transfer mechanism for a
server with a DRAM-NVM heterogeneous memory system.
We prototype RAMBDA using a commercial system based

on an Intel Xeon 6138P CPU, which integrates an on-package
FPGA connected to the CPU coherence bus. We evaluate three
popular µs-scale datacenter applications: (1) an in-memory key-
value store, where requests fully bypass the CPU; (2) a chain
replication-based distributed transaction processing system –
an example of a latency-sensitive system with NVM; and (3)
a deep learning recommendation model (DLRM) inference,
which requires collaboration between a server CPU and a
cc-accelerator to process requests. We show that RAMBDA
provides 30.1–69.1% lower latency, up to 0.2∼2.5× throughput,
and 3× higher power efficiency than current state-of-the-art
solutions. However, RAMBDA is not a panacea – for the cases
where it is significantly slower than the current CPU-based
solutions, we find that RAMBDA’s memory bandwidth can be
a critical bottleneck compared to other solutions, limiting the
speed data is retrieved in bandwidth-bound workloads. Hence,
we also envision and demonstrate that a future cc-accelerator
with accelerator-local memory can further improve latency
and throughput by 11.2% and 62.1×, respectively.

II. BACKGROUND AND MOTIVATION

A. RDMA Primer

RDMA allows machines to access the memory of remote
machines at high bandwidth and low latency. RDMA has now
been widely deployed by datacenters [49, 55, 166, 180] and
used to build various research and production systems. RDMA
offloads the network transport stack to RNIC hardware and
supports operations completely in user space, bypassing the
kernel. One-sided RDMA operations (e.g., read/write/atomics)
completely bypass the remote server’s CPU for remote
memory accesses. Meanwhile, two-sided RDMA operations
(e.g., send/receive) are similar to conventional network

0% 20% 40% 60% 80% 100%

0

100

200

300

400

500

Fig. 1: Random memory access request latency from Smart
NIC for different percentages of host memory accesses. Each
data point contains 100 back-to-back 64B memory accesses.

communications (e.g., TCP/UDP) as they involve the CPUs
of both clients and servers for data transmission.

The key data structures in RDMA programming are queue
pair (QP) and completion queue (CQ), shared between the host
(user space) and the RNIC. A QP consists of two work queues
(WQs): a send queue (SQ) and a receive queue (RQ), both
ring buffers in the host memory. To post an RDMA operation,
the user writes to a work queue entry (WQE) at the tail of
the WQ with a pre-defined device-specific format and rings
the RNIC’s doorbell register using an MMIO write. Upon
completion of the RDMA operation, the RNIC (optionally)
writes to a completion queue entry (CQE) at the tail of the CQ
(also a ring buffer in the host memory) associated with the QP.
Hosts learn about operation completion by polling the CQ.

B. Dilemma of Using Smart NIC

Recent Smart NICs integrate either FPGA or customized low-
profile CPU with NICs. Prior work has shown that Smart NICs
running datacenter applications can offer higher performance
and energy efficiency than host CPUs [84, 94]. However,
Smart NICs have limited memory capacity (O(10 GB) [100])
under cost, power, and form factor constraints. As such,
they often need to access the host memory when running
applications with large working sets. Unfortunately, such host
memory accesses are not cheap, primarily because they must
go through PCIe links. This has been identified by multiple
system designs [19, 84, 94, 116, 141]. We also quantify this
effect using an experiment on a NVIDIA BlueField-2 Smart
NIC (see Sec. V for the detail of our testbed). We run a
simple benchmark on the NIC’s ARM cores, which randomly
access data from one of 1 GB pre-allocated buffers, one in the
NIC’s on-board DRAM and the other in the host DRAM. The
benchmark accesses the on-board DRAM with load/store

cc-
intcon

Server A, B, C, …
Client 1, 2, 3, …

Request
(RDMA Write)

Response
(RDMA Write)

CPU

Shared Coherent
Memory Space

1 2 …
…
Memory

A B

RNIC CPU cc-acc
RNIC

Fig. 2: RAMBDA’s high-level system architecture; only the
snapshot of client-1 and server-A are demonstrated.

instructions and accesses the host DRAM with one-sided
RDMA read/write (we use direct verbs [137] to minimize the
RDMA software stack overhead). In each request from the
benchmark, we consecutively access the memory 100 times
(64 bytes for each access). We report the request latency for
different percentages of local/host access in Fig. 1 (each data
point is based on 1M requests). For example, “80%” means
80% of the 100 memory accesses are to the host DRAM and the
remaining 20% are to the on-board DRAM. Both the average
and 99th-percentile tail latency values increase linearly with
more memory accesses to the host DRAM. This is attributed to
long latency of going through the physical PCIe link, memory
management unit (MMU), DMA engine, and I/O controller.
Such a high overhead can also affect throughput, although host
memory accesses can be batched/pipelined to hide latency.

Consequently, the Smart NIC is only well suited for
applications with working sets that are either small enough to
fit in the Smart NIC’s local on-board memory or effective for
caching (i.e., sufficient spatial locality or skewed distributions
of memory accesses). Otherwise, the frequent communications
between the NIC and the host will adversely affect the
end-to-end performance of applications.

C. Cache-coherent Interconnects and Accelerators

Originally, cc-interconnects were developed for NUMA systems
where CPUs share the memory space in a cache-coherent
manner; recent examples include UPI and Infinity Fabric. More
recent cc-interconnect designs such as CXL [33], CAPI [148],
and CCIX [25] support fine-grained data sharing between CPUs
and accelerators (accessed via standard chip-to-chip physical
links such as PCIe). Accelerators built on such cc-interconnects
are referred to as cc-accelerators. Because host-accelerator
communication is cheaper, especially for small data sizes,
cc-accelerators can be more efficient than conventional
accelerators.This makes cc-accelerators suitable for µs-scale
acceleration/offloading. Currently, some cc-accelerators are
commercially available [29, 30, 69], and more are likely to
emerge as CXL support becomes more widespread [125].

III. RAMBDA SYSTEM ARCHITECTURE

We depict a high-level system architecture of RAMBDA in Fig. 2.
RAMBDA envisions a system comprising a cc-accelerator, a
standard RNIC, and a CPU, all cooperating for efficient network
and application processing. Specifically, (1) the cc-accelerator
not only offloads parts of application processing from the server

CPU but also directly interacts with the RNIC for client com-
munication without involving the server CPU; (2) the standard
RNIC handles network stack processing; and (3) the server CPU
tackles accelerator-unfriendly (irregular and branch-rich) part of
application processing (“fast path”) in addition to initialization,
control, and management of hardware resources, applications,
and network connections (“slow path”). The synergistic orches-
trations among (1) – (3) are facilitated by RAMBDA’s four
software and hardware components described in this section.
Also, RAMBDA envisions a unified memory subsystem with
both CPU-attached and accelerator-attached physical memory,
which should be in the same address space and coherence do-
main. Depending on different workloads, the latency/bandwidth
requirements of the accelerator-attached memory may vary, but
we do envision that the capacity is at the same level as the
CPU-attached memory [30, 32, 68] so that more application
data can be mapped to the accelerator-attached memory.

A. Inter- and Intra-machine Communication

RAMBDA provides a fast and efficient communication
abstraction for both inter-machine communication (between a
server and clients) and intra-machine communication (between
a server’s CPU and cc-accelerator). Although the underlying
data structure (lock-free ring buffer) is not new and has been
employed before [39, 154], our abstraction unifies inter- and
intra-machine communication using the same programming
model with unique features of cache-coherence and RDMA.
For each client-server connection, we establish a pair of a
request ring buffer (in the server memory) and a response
ring buffer (in the client memory) for inter-machine RDMA
communications. For example, buffer-1 on server-A and
buffer-A on client-1 form a request-response buffer pair for a
connection between client-1 and server-A in Fig. 2. Further, for
each accelerator in a server, we establish one request-response
ring buffer pair in the server memory for intra-machine
communications. One-sided RDMA write is used by both
servers and clients for high-performance inter-machine
communications through message passing where all the
underlying network transport processing is offloaded to the
RNIC [39, 154]. For intra-machine communications, leveraging
the shared coherence domain, the server CPU or cc-accelerator
directly writes and read the ring buffers. This abstraction not
only guarantees high performance by avoiding extra CPU cycles
on the communication stack, but also facilitates the accelerator
operations, as it can fetch application data directly (instead of
accessing intermediate data first, like any form of descriptor).

Note that we do not share the ring buffers (and the
underlying RDMA QPs for the inter-machine communications)
across different client-server connections, to avoid performance
overheads with atomic updates or consistency issues at the
head/tail of the buffer without atomic updates. However,
we do allow sharing the ring buffers (and the RDMA QPs)
across threads on the same machine for better scalability, as
a software layer/library can manage cross-thread contentions
with slight performance overheads [28, 113, 155]. Specifically,
we employ the Flock’s method [113], i.e., one dedicated

Request
Bu�ers

…

Pointer Bu�er
(cpoll region)

Request Bu�ers

(cpoll region)

+

(b) Small Scale/Small Request (c) Large Scale/Large Request

… …

Shared Coherent Memory Space

RNIC cc-acc

…

cpoll Region

1

2 3Write Triggered

Register

(a) cpoll workf ow

Fig. 3: cpoll region for cc-accelerator notification.

thread on the client for request synchronization and dispatch,
so that there is only one request-response buffer pair (and
QP) per client-server pair per application and observe no
performance loss compared to native RDMA primitives.

The client is responsible for tracking the tail of the request
buffer in the server memory and the head of the response
buffer in its local memory, similar to the credit-based flow
control [86]. Whenever it writes a message to the request
buffer, it will update its local record of the request buffer’s
tail; whenever it receives a message in the response buffer (by
polling), it will update its local record of the response buffer’s
head and reset the buffer entry to “0”. Only if the request
buffer’s tail is behind the response buffer’s head can the client
issue a request. Otherwise, it knows that the buffer is full of on-
the-fly requests and should not send more requests. A similar
mechanism is applied to the server for request buffer’s head
and response buffer’s tail. This guarantees that any message
can be passed by only one network trip without any conflict.

B. Coherence-assisted Accelerator Notification

Since messages are directly written to request buffers in
server memory, the RAMBDA cc-accelerator needs to detect
their arrival. Typically, this would be done with spin-polling.
However, frequent polling wastes the limited bandwidth of the
cc-interconnect, leaving little available for accessing memory
during application processing. Polling also leads to high power
consumption [14, 45, 52], fast transistor aging [122], and
poor scalability with many queues [52]. Hence, we propose
a coherence-assisted notification mechanism, called cpoll.

Conceptually and semantically, cpoll is similar to MWAIT in
the x86 architecture [65], HyperPlane’s QWAIT [109], and PCIe’s
lightweight notification (LN) proposal [51, 132]. cpoll differs
from them because it is designed to be portable and platform-
agnostic (i.e., requires no CPU modification and no specific
protocol) for off-chip devices. Specifically, we insert a cpoll

checker in the datapath of the coherence controller’s port con-
nected to the cc-interconnect. During initialization, we first allo-
cate the inter- and intra-machine communication request buffers
(Sec. III-A) in a contiguous region of server memory (i.e., cpoll
region), and register this region to the cc-accelerator’s cpoll

checker for snooping, as depicted in Fig. 3(a). Then, when
the cc-accelerator’s coherence controller receives a coherence
signal from the registered address region (e.g., Modified →
Invalid), it will notify the cc-accelerator of arrival of a request.
The cpoll checker will only need to monitor a single address re-
gion illustrated in Fig. 3(a). If the address of a coherence signal
falls into this region, the cpoll checker can identify which re-
quest buffer (associated with a specific client or the server CPU)
received a new request based on its address. By monitoring
only one region, and using consecutive, fixed-size buffers, this
dispatch is trivially scalable. (Even if buffers are not allocated
consecutively in memory, HyperPlane [109] has demonstrated
reasonable address lookup overhead to thousands of buffers.)

To implement the cpoll mechanism, we propose two
approaches. First, we allocate the cpoll region in CPU-attached
memory, and then pin the region on the cc-accelerator’s local
cache. Note that the cc-accelerator resets the request buffer
entry associated with a cpoll signal after it processes the
request. This makes the cc-accelerator’s local cache always own
the cpoll region from the cache coherence viewpoint, so any
change to the cpoll region by clients or the server CPU triggers
a coherence signal. Alternatively – though our prototype plat-
form does not support this – the cpoll region could be allocated
from memory attached to the cc-accelerator. As such, any
request from the RNIC to the request buffers in server memory
will go through the cc-interconnect. Subsequently, they will
be delivered to the cc-accelerator’s coherence controller which
is responsible for monitoring any change to the cpoll region.

The first approach is feasible with our prototype platform
(Sec. V), but the size of request buffers is constrained by
the cc-accelerator’s local cache size, limiting its scalability
at the moment. When the scale of the system is large (i.e.,
many request buffers) or each request itself is large (i.e., large
buffers), we cannot pin the entire cpoll region on the cc-
accelerator’s cache. To tackle this scalability issue in our setup,
we introduce a data structure called pointer buffer where each
4-byte entry corresponds to each inter- or intra-machine request
buffer and stores a pointer (or index) to an entry in the request
buffer, as depicted in Fig. 3(c). Subsequently, we register the
pointer buffer allocated to a contiguous address space as the
cpoll region. When writing a new request to a request buffer
in the server memory, a client or the server CPU will also
increment the value of the pointer buffer entry corresponding to
the request buffer such that the pointer buffer entry points to the
request buffer tail. For a remote client, this can be efficiently
done by posting two contiguous WQEs (only the second
one is signaled) with a batched doorbell to the RNIC [77]
or remapping/interleaving the two buffers with user-mode
memory registration (UMR) [120] and only posting one WQE.

Note that one additional small PCIe write to the server
side is inevitable in both ways. However, since RAMBDA
has already reduced the PCIe traffic and mainly leverages
the coherence traffic, such overhead will not notably hurt the
overall performance, which is confirmed by our experiments
in Sec. VI. In addition, as a 4-byte pointer buffer entry covers
an entire request buffer, which can be as large as several MBs

Fig. 4: RAMBDA cc-accelerator architecture.

for some applications such as the one described in Sec. IV-B,
it can substantially reduce the memory space requirement for
the cpoll region. Finally, coherence signals are not guaranteed
to come in the order of actual data writes. However, this does
not affect the correctness of cpoll because it is designed to
be used with a ring buffer, and leverages the semantics of the
ring buffer, i.e., request buffer entries are written in order.

C. RAMBDA cc-accelerator Architecture

The RAMBDA coherence controller (Fig. 4) handles all
the coherence traffic (both regular read/write and cpoll) to
or from the cc-accelerator, as well as the virtual-physical
address translation (i.e., TLB). The local cache is also in the
coherence domain and handled by the coherence controller.
The RAMBDA cc-accelerator may have its own local memory
controller and memory [30, 32] that constitutes the unified
memory space with the CPU memory. In such an architecture,
the CPU may allocate application data to the cc-accelerator’s
local memory, as the NUMA-aware memory management
does in the modern Linux kernel.

The scheduler fetches cpoll signals associated with different
request buffers based on a given scheduling algorithm. The
nature of the coherence bus may cause cpoll signals to be
coalesced. For example, two updates to the same entry in
the pointer buffer in a short period might generate only one
cpoll signal. However, we leverage the semantics of the ring
buffer, by tracking the previous tail of the request buffer in
the cc-accelerator. This allows it to determine how many new
requests were received since the last notification and inform
the application processing unit (APU) accordingly.

The RDMA SQ handler is responsible for direct RNIC
control. It assembles the response information from the APU
into WQE format, then writes it to the corresponding RDMA
connection’s WQ, and rings the RNIC’s doorbell register.
Since the cc-accelerator is in the coherence domain with
unified address space, we do not need to store the entire WQ
into the SQ handler. Instead, during the initialization, only
the starting address and number of entries of each WQ is
registered to the SQ handler from the software. Later, upon
the response, it will write information into the WQ one by
one, causing little scalability overhead on the cc-accelerator.

Since polling the CQ is not on the critical datapath, we do
not process it with the cc-accelerator. Instead, we use a single
CPU core to handle all the CQs polling and bookkeeping.

Unsignaled WQE [77] is applied here so that only the selected
operations will notify the CQ of their completion. This can
alleviate the overhead of RNIC-CPU communication when
the CPU is polling multiple CQs. Besides, this helps reduce
unnecessary traffic on the cc-interconnect.

The APU is the only application-specific part in the
entire RAMBDA architecture, yielding a fine balance
between RAMBDA programmability and user implementation
complexity. It provides the user with standard interfaces for
(1) cpoll signal reception, (2) coherent data read/write, and (3)
RDMA WQE output. First, a (de)serializer can be optionally
used, if the application uses an RPC protocol for inter-machine
communications [89]. Then, to process requests, we typically
need a data structure walker [53, 85, 103, 168, 171] to find
the location of the target data of the request. To maximize the
memory-level parallelism and hide the memory access latency,
multiple outstanding requests and out-of-order execution
should be supported. Inspired by the stateful network function
accelerator [133], we employ a table-based finite state machine
for this purpose, where the outstanding request status is
stored in a TCAM or cuckoo hash table [177] for fast lookup.
Upon the arrival of a new request or intermediate result, the
corresponding TCAM or hash table entry is updated and then
the next-step action is issued to a corresponding functional
unit (e.g., ALU or coherence controller).

The APU should invoke the CPU in two scenarios. The first
scenario is when a library call or OS syscall is needed. For ex-
ample, if the user space memory pool has been pre-allocated by
the CPU (malloc/mmap), the APU itself can allocate objects for
new data in the memory pool [94]; if not, malloc is called each
time when a new object is needed. The second scenario is when
CPU is more suitable than the APU for a certain part of appli-
cation processing. For example, in a recommender inference
system (see Sec. IV), while the APU can handle the embedding
reduction and fully-connected layers, the request preprocessing
(e.g., transforming a human-readable request to a model input)
should still run on the CPU due to its irregularity and complex-
ity. In these scenarios, the cc-accelerator and CPU interact with
low latency in a fine-grained manner described in Sec. III-A.

D. Optimizing Device-host Data Transfer: Adaptive DDIO

Having the RAMBDA system design, we finally consider the
optimization of device-memory-cache interaction inside a single
machine, or specifically, how to choose between the cache and
memory as the data destination for optimal device-host data
transfer. Given the data-intensive nature of RAMBDA’s usage
scenarios, this optimization is notably important for the entire
system. As the device I/O speeds increase, Intel introduced
data-direct I/O (DDIO) [70], a CPU-wide technology, to
allow the device to directly inject data to the CPU’s last level
cache (LLC) instead of main memory. This reduces memory
bandwidth consumption and latency required by I/O.

DDIO has been proven to be effective [4, 20, 46, 47, 74,
87, 105, 131, 153, 162, 170], improving the performance of
DRAM-based systems [4, 20, 87]. However, it does not always
improve performance of NVM-based systems [74, 162]. which

DDIO On
TPH On

DDIO On
TPH Off

DDIO Off
TPH On

DDIO Off
TPH Off

0

10

20

30

40

3515, 3497

Fig. 5: Memory bandwidth consumption by PCIe-bench’s
DMA write with different DDIO/TPH settings.

is increasingly deployed by datacenters to cost-effectively
provide large memory capacity for applications such as
in-memory database [11, 18]. This is mainly because of two
reasons. (1) NVM usually has a larger access granularity than
DRAM and cache. For example, the access granularity of
the Intel® Optane DIMM is 256 bytes while that of DRAM
and cache is 64 bytes in Intel-based system [167]. When the
DDIO-ed data is evicted from LLC to NVM, the write-back to
the NVM will be randomized because of the cache replacement
policies. As a result, write amplification wastes the bandwidth
of NVM [74], which is already lower than that of DRAM. (2)
CPU caches are typically not persistent; Intel® eADR [64]
makes cache as part of the persistency domain but it requires
a large battery and has high power consumption [6, 16]. As
such, applications often have to flush data in cache to NVM to
remain correct in case of a crash, with performance cost [151].

To tackle the aforementioned limitation, we propose to ex-
ploit a rarely-discussed field in the PCIe packet header, TLP pro-
cessing hints (TPH). It is the 16th bit in the PCIe header and a
performance feature that allows the CPU to prefetch or keep cer-
tain PCIe writeback data in LLC for quick consumption by CPU
cores [123]. To our best knowledge, no current commercial I/O
device (including SSD and NIC) uses the TPH bit; it is always
set to 0 as a placeholder in both hardware and device drivers.

Our experiment confirms that changing the TPH bit allows
us to control the destination of data to either LLC or memory
per PCIe packet. Being the first to clarify the DDIO-TPH
relationship on modern and general server platforms, we
perform an experiment running PCIe-bench [116] on a
VC709 FPGA board [165] in which we implement a module
that allows an API to set the TPH bit on-the-fly for each
PCIe packet. The FPGA DMAs (random write) data to the
(DRAM-based) host at a constant speed of 3.5GB/s. We
measure the memory bandwidth consumption on the host side
in four configurations (DDIO on/off + TPH on/off) in Fig. 5.
Only when both DDIO and TPH are off, do we observe large
memory bandwidth consumption (i.e., ∼3.5GB/s for both
read and write), which is aligned with the DMA throughput
reported by the FPGA. This indicates that all DMA data is
sent to the main memory. Otherwise, if either DDIO or TPH
is on, there will be little memory bandwidth consumption,
meaning data is sent to the LLC directly.

Since TPH is applicable to each PCIe packet, we propose
two guidelines for future systems with heterogeneous memory,
as depicted in Fig. 6. (1) DDIO should be disabled globally on

CPU

I/O Controller
(DDIO O)

RNIC

Memory
Controller

LLC

On-chip Interconnect

NVDIMMNVDIMMNVM

DRAMDRAMDRAM

…

Is the address in NVM?

TPH bit set in the

PCIe packet

Fig. 6: DDIO/TPH configurations in the system with NVM.

the CPU by default. (2) The device should expose the knob of
changing the TPH bit for the programmer. Taking RNIC as an
example, one way to do this would be to make it a configuration
parameter set when registering a memory region to the RNIC,
specifying whether the registered address range belongs to
DRAM or NVM (or based on more flexible conditions). Later,
when executing an RDMA operation (e.g., write), the RNIC
hardware will set the TPH bit only for operations in DRAM
regions, avoiding DDIO-induced write amplification on NVM
regions. While this requires hardware modifications to the
RNIC, our experiment that adds this functionality to the
original PCIe-bench shows that it adds almost no cost to the
NIC hardware design. Following these two guidelines, we can
make DDIO NVM-aware independently for each I/O device.

E. RAMBDA Programming Model

We provide a software user-space framework/interface for
upper-level applications. An application needs to register itself
to the RAMBDA framework with initialization information, such
as connection establishment, the memory region of the applica-
tion data, and the targeting cc-accelerator. The RAMBDA frame-
work then is responsible for allocating the request/response
buffers by mmap/malloc calls and registering the buffers to the
RNIC by verbs APIs. Also, it makes the application’s and the
request/response buffers’ virtual memory space visible to the
cc-accelerator. To pin the cpoll region to cc-accelerator’s local
cache, the framework writes the cc-accelerator’s configuration
registers, which are accessible in user-space as well through
MMIO. The coherence controller then will never evict the
corresponding cachelines from the local cache.

We do not restrict any programming model for the APU,
as there could be a huge diversity in different applications,
and it is not the focus of this work. Programmers may refer
to other related work [104, 171, 174] to explore how a single
model/instance can support many applications.

F. RAMBDA Scalability

Scalability with faster network. As the speed of network is
growing fast, a critical question is whether RAMBDA will keep
up with the speed of future network (e.g., 400Gbps). First,
in our implementation (Sec. V) and experiments (Sec. VI),
the cc-interconnect’s bandwidth is not saturated in RAMBDA
KV and RAMBDA TX. Furthermore, accelerator-attached
memory with comparable capacity to the CPU [30, 32, 68]
will further liberate the bandwidth of the cc-interconnect
from application-related memory requests. Hence, the
cc-interconnect can better serve the RNIC/CPU-cc-accelerator

interaction. This means RAMBDA will be bottlenecked by the
network bandwidth and can achieve higher performance with
newer network technologies (also note that the cc-interconnect
performance will evolve as well).
Scalability with larger cluster. With the advance in SoC tech-
nologies [118, 119] (e.g., larger on-NIC cache for connection in-
formation), the previous scalability issues and on-NIC resource
constraints of reliable RDMA connections [75, 77, 78, 90] have
been alleviated. Building on top of RDMA, RAMBDA offers the
same scalability as RDMA does. The dedicated buffer pair does
not limit scalability as each buffer is small, e.g., 1MB for 1K en-
tries that are enough for most request sizes and saturate network
bandwidth in modern datacenters [80]. To support connections
from 1K clients, each running a single application, a server only
needs to allocate 1GB of its main memory, a small fraction of
the total memory capacity of modern servers. Also, sharing the
buffers across threads does not limit scalability either [113].

In fact, RAMBDA is not strictly bound to the existing
commodity RDMA technology, and more recent remote
memory access (RMA) variants [10, 143, 146, 159] (as long
as they share the same semantics) can be adopted to RAMBDA
for better scalability.

IV. RAMBDA USE CASES

A. In-Memory Key-Value Store

In-memory key-value store (KVS) is a basic building block of
many datacenter services. In addition to software optimizations,
researchers have leveraged all the three directions mentioned
in Sec. I for further KVS acceleration. The major requirement
of KVS is high memory access parallelism across requests.

An RAMBDA design for KVS, dubbed RAMBDA KV aims
to fully offload request processing to the cc-accelerator. At
the algorithm/data structure level, RAMBDA KV is similar
to MICA [98], but RAMBDA KV follows the architectural
description of Sec. III-C at the hardware level, including a
pipelined hash unit for hash value/index calculation. RAMBDA
KV performs a GET/UPDATE request by calculating the
hashed key value and finding the corresponding entry in the
set-associated hash table’s bucket. The entry contains a pointer
to the actual key-value data. For PUT requests, after finding
the address where a new key-value pair should be allocated
(i.e., an empty entry in the bucket), the slab allocator will
simply put it in the pre-defined memory pool. If the bucket
indexed by the hashed key is full (i.e., hash collision), another
bucket with the same format will be allocated and linked to
the existing bucket by a pointer. Similar to KV-Direct [94] and
MICA [98]’s study, on average, each GET request requires
three memory accesses and each PUT request requires four.

B. Distributed Transaction with NVM-based Chain Replication

Distributed transactional systems are widely used by datacenters
to provide the ACID feature for distributed storage systems. To
this end, cross-machine protocols for data replication are usually
needed, and chain replication [5, 8, 12, 12, 22, 43, 43, 50, 50,
108, 114, 124, 124, 129, 138, 150, 152, 156, 178] is a popular

primary-backup replication protocol. In chain replication, ma-
chines are virtually organized into a linear chain. Any change to
the data will begin at the head of the chain and pass through the
chain. When the last machine in the chain makes the change in
its log, it will back-propagate the ACK signal through the chain
so that each machine can locally commit the transaction. When
the head of the chain commits the transaction, it sends the ACK
signal back to the client, marking the end of the transaction.

The state-of-the-art work, HyperLoop [83], leverages the
RNIC and NVM to achieve low-latency chain replication
with little CPU involvement. Specifically, it proposes and
implements group-based RDMA primitives, which can be
triggered automatically by the RNIC. One key-value pair
(addressed by the offset in the NVM space) is modified in
the entire chain once the client initiates a group-based RDMA
operation. However, due to the restricted (group-based) RDMA
semantics, to process multi-value transactions, the client needs
to sequentially issue RDMA operations for each key-value pair,
which often leads to long latency in the network and PCIe link.

An RAMBDA design for such a distributed transaction
system, dubbed RAMBDA TX is similar to RAMBDA KV with
respect to request processing, but it additionally implements a
concurrency control unit in the APU. That is, any single key-
value pair can only be accessed by one outstanding transaction,
and the other related transactions will be buffered in the queue
in the order of arrival. The concurrency control unit is a small
hash table, and its entries are indexed by the key of the key-
value pair. Key-value pairs are stored in the NVM and accessed
by the address offset relative to the starting address, which
is the same as HyperLoop. Also, it adds the functionality of
chain-based communication across replica machines. The inter-
machine communications still rely on ring buffers described in
Sec. III-A, but the ring buffers are allocated in the NVM as the
redo-log for failure recovery. One log entry (transaction) can
contain multiple (data, len, offset) tuples, and the first byte
of the log entry indicates the number of tuples. One exception
is pure read transactions. Similar to HyperLoop, since the
chain replication protocol already provides data consistency, a
client can conduct a pure read transaction by directly accessing
the chain’s head/tail machine with one-sided RDMA read.

C. DLRM Inference

DLRMs have received much attention by Internet
giants [2, 26, 38, 38, 58, 59, 81, 115] as they can offer
more revenue and better user experience. In an end-to-end
recommender system, the most expensive part of serving an
inference request is the embedding reduction step, consuming
huge memory capacity [115, 175, 176] and 1

2 ∼ 3
4 of the

inference time [40, 59, 61, 81, 92]. The embedding reduction
operation processes queries on a set of features. It finds
a (sparse) embedding vector in the embedding table (a
high-dimension matrix) and aggregates a value. The values of
all features are assembled as the result. Also, the embedding
reduction is bounded by memory bandwidth and exhibits poor
data locality [81, 92, 172]. Last but not least, it also incorporates
routines like request parsing and transforming (pre-processing),

TABLE II: RAMBDA testbed configurations.

2× Intel® Xeon 6138P CPUs@2.0GHz [69]

20 Skylake cores, hyperthreading enabled, running Ubuntu 18
27.5MB shared LLC
Six DDR4-2666 channels, 192GB DRAM in total

In-package Intel® Arria 10GX FPGA@400MHz [66]

One UPI link to the CPU, 10.4GT/s (20.8GB/s)
64KB local cache
LUT usage 11K (26%)
Registers usage 130K (8%)
BRAM blocks usage 387 (14%)

NVIDIA BlueField-2 Smart NIC SoC [119]

2x25Gbps Ethernet ports, backed by ConnectX-6 Dx controller
RDMA over converged Ethernet V2 (RoCEv2)
Eight ARM A72 cores@2.5GHz, running Ubuntu 20
6MB shared LLC
16GB on-board DDR4-1600 DRAM
One-sided RDMA for ARM to access the host memory

which are irregular and branch-rich. As such it is not suitable for
hardware accelerators. These characteristics make it unsuitable,
if not impossible, to be fully offloaded to any Smart NIC or
cc-accelerator. In addition to acceleration with specialized hard-
ware like in-memory processing [9, 81, 88, 128], MERCI [92]
takes an algorithmic way to memoize sub-query grouped results
to reduce memory pressure on the commodity server platform.

Different from RAMBDA KV and RAMBDA TX, we
design RAMBDA DLRM as an example of CPU-accelerator
collaboration for request processing. Upon receiving a request
from a client, the cc-accelerator first goes through the RPC
stack, and then passes the request to the CPU through the
ring buffer, where the request is parsed and transformed to
model-ready input. Now, the input (request) is passed again to
the cc-accelerator’s APU, where the full inference, especially
embedding reduction, is done. Finally, the cc-accelerator sends
the result (response) back to the client through the RNIC.
Empirically, we observe that one CPU core with 60% usage
can already keep up with the network and the cc-accelerator
processing rate. In DLRM, not all memory accesses in a single
query need to be serialized. Hence, in the APU, we issue 64
memory requests for each query’s iteration so that the memory
bandwidth can be fully utilized and the memory access latency
can be hidden. Lastly, the ALU is enhanced to support various
aggregation operators (e.g., max/min/inner product).

V. IMPLEMENTATION AND METHODOLOGY

We prototype RAMBDA with a system containing two Intel®

Xeon Gold 6138P CPUs with an in-package FPGA. The
configurations of the system are listed in Tab. II.

We implement a round-robin scheduler. The APU can
support 256 outstanding requests. Each request buffer has
1024 entries. We adopt HERD’s RPC protocol [76, 77]
for its simplicity, but any advanced RPC stack could be
applied [89]. The resource utilization numbers in Tab. II
reflect our RAMBDA key-value store accelerator (Sec. IV). The
utilization results for the other applications we have built are

similar, because ∼80% of used resources go to the common
components of the coherence controller and the local cache.

The current implementation has two major limitations. The
first one is the performance of the coherence controller. As a
soft design in the programmable fabric of the FPGA, it suffers
from synthesis constraints and can perform at at most 400 MHz,
incurring limited data access performance, which has also been
observed by prior work [89]. However, its counterparts on a
regular server CPU can operate at ∼2 GHz [1]. We expect
such infrastructural parts can be fixed by hard IP in future
FPGAs, offering comparable performance to that of CPUs [68].
The FPGA also lacks local memory in the same coherence
domain or with comparable capacity to CPU-attached memory.
Consequently, most application memory requests must go
through the cc-interconnect (due to their large working sets),
similar to cross-NUMA memory access. Additionally, the
cpoll region must be pinned in the cc-accelerator’s local cache.
We expect these limitations would be lessened when RAMBDA
is implemented in CXL-based devices [32, 54] or Enzian [30].

To explore the potential of RAMBDA’s performance on future
platforms we also use a stand-alone U280 FPGA card [164]
with 32 GB DDR4 memory and 8 GB HBM2 to emulate a
cc-accelerator with local coherent memory [30, 32, 54]. Prior
work [158] has shown that these two types of memory can
achieve ∼36 GB/s and ∼425 GB/s throughput, respectively.
Specifically, we adapt the APU to the U280 card using either
the DDR4 or HBM2 controller. The application data is mapped
and initialized in the FPGA’s local memory. Rather than
interacting with a real RNIC, we emulate arrival of RDMA
requests by generating requests within the FPGA matching
the RDMA write rate measured on the testbed. We believe
this emulation methodology offers correct and convincing
results since coherence (of the application data) makes no big
difference here after the data has been allocated and initialized
in the FPGA-attached memory; during request processing, most
memory traffic does not need to go across the cc-interconnect.
For throughput experiments, we measure requests processed on
the FPGA per second. For latency experiments, we compute
the emulated end-to-end latency by combining application
processing time measured on the U280 with the average latency
of the rest of the stack. Specifically, we measure the average
latency from a request’s generation to its completion on the
U280, then add the average full-system end-to-end latency
without an APU, measured on the client machine. Note that
this approach emulates average latency, so does not apply to
tail latency measurements. In the following sections, we notate
the U280 DDR4-based results as “RAMBDA-LD (local DDR4)”
and HBM2-based results as “RAMBDA-LH (local HBM2)”.

Lastly, we use the NVIDIA ConnectX-6-based BlueField-2
Smart NIC [119] as the RNIC. It also provides eight ARM
cores, which we use to compare against a Smart NIC approach.

VI. EVALUATION

A. Microbenchmark

To demonstrate the benefits of each RAMBDA component and
avoid the network bandwidth as the bottleneck (as we will see

0

10

20

1

7.5

14.8

7.4
9

19.3

23.9

0.0

0.5

1.0

1.5

1

1.2

Fig. 7: Normalized throughput performance of different
approaches on the microbenchmark.

in the following sections), we first run a single-machine mi-
crobenchmark and analyze RAMBDA’s performance against the
highly-optimized software solutions on multiple cores. Specif-
ically, we use the CPU cores on the other NUMA node in the
server to feed requests to the CPU cores or RAMBDA accelera-
tor on the local NUMA node via shared memory buffer (to emu-
late the one-sided RDMA behavior). For each request, the core
or RAMBDA accelerator will randomly pick a node from a pre-
defined and permuted 10M-node in-memory linked list, traverse
the two succeeding nodes, and return the value in the second
node. In CPU solutions, we use one, eight, and 16 cores to per-
form the microbenchmark, each with a batch size of 16 requests
(optimized for throughput). In RAMBDA, we have a “RAMBDA-
polling” variant that replaces cpoll with regular spin-polling
to demonstrate cpoll’s benefit. Empirically, we choose 30
FPGA clock cycles as the spin-polling interval. Also, we have
a “RAMBDA-DDIO” variant on the NVM-based experiment,
which always turns DDIO on, to show the benefit of the pro-
posed adaptive DDIO mechanism. All RAMBDA variants have
16 connections to the cores on the other NUMA node. Since the
(Skylake) CPU with in-package FPGA does not support Intel
Optane DIMMs, we emulate NVM’s behavior by adding latency
and throttling memory bandwidth in the FPGA and the ARM
emulation program. We follow NVM’s characteristics from re-
cent Optane-based studies [74, 167] to calibrate our emulation.

Fig. 7 plots the throughput of different approaches.
All DRAM-based results are normalized to single-core’s
throughout; and the NVM-based results are normalized to
RAMBDA-DDIO. In the DRAM-based experiment, since
the microbenchmark has little cross-thread contention, the
CPU-based solutions scale almost linearly. On the other hand,
RAMBDA-polling, limited by bandwidth of the cc-interconnect,
is equivalent to ∼8 cores’ performance. By reducing the latency
and traffic of polling, RAMBDA with cpoll further improves
the throughput by ∼ 21.6%. Having more local memory for
better bandwidth and latency characteristics, RAMBDA-LD
and RAMBDA-LH further remove the cc-interconnect in
the original RAMBDA, bringing 114.4% ∼ 165.6% more
improvement. Also, for the NVM case, reducing the write
amplification and thus bandwidth utilization, adaptive DDIO
mechanism can improve the throughput by ∼ 20%, aligned
with the number reported in the prior work [74, 162].

100% GET 50% GET, 50% PUT
0

20

40

100% GET 50% GET, 50% PUT
0

20

40

Fig. 8: Peak throughput performance of different KVS designs.
The batch size of 32 is applied.

B. In-Memory Key-Value Store

Due to the limited availability of devices, we run RAMBDA
KV on one server and one client. We compare RAMBDA with
two state-of-the-art baselines: highly-optimized open-source
two-sided RDMA-RPC (MICA-backed) [76, 77] (denoted

“CPU”) and Smart NIC [94, 145]. For CPU, we use ten threads
(cores) on the testbed to maximize KVS throughput. Each
thread is fed with requests by one client instance (each with
two dedicated Skylake cores) on the client machine (also
equipped with the BlueField-2 Smart NIC). For RAMBDA, we
also use 10 client instances to feed requests that are processed
on the same RAMBDA accelerator. For Smart NIC, we use the
Smart NIC’s eight ARM cores to emulate the behavior of the
specialized hardware in KV-Direct [94] and StRoM [145]. The
ARM cores process the request, which is sent from the client
Intel CPU by RDMA. The ARM cores retrieve necessary
data from their server host through RDMA. ARM cores are
not as efficient as specialized FPGA designs [94, 145] when
processing KVS and accessing host memory, but the ARM
cores’ frequency is ∼ 10× higher, alleviating the efficiency
gap. When running KVS entirely on the Smart NIC’s on-board
DRAM, we measure the eight ARM cores’ peak throughput
to match that of six Intel CPU cores.

We pre-load 100M key-value pairs (64 B size, ∼7 GB
memory in total) and then access them using uniform and
Zipfian 0.9 distributions. We test two types of workloads:
read-intensive (100% GET), and write-intensive (50% GET,
50% PUT). The MICA-based mechanism [76, 77] eliminates
concurrency issues (e.g., only allowing the “owner core”
to read/write the data partition). As such, the performance
of a heavy PUT workload differs little from the GET-only
workload, matching results of prior work [77, 94].

In CPU and RAMBDA, both the hash table and key-value
pairs are stored in the host memory; in Smart NIC, we allocate
512 MB of the Smart NIC’s on-board DRAM as a cache of
the most recently accessed hash entries and key-value pairs.
The cache-total ratio (512 MB : 7 GB) is roughly the memory
capacity ratio (16 GB : 192 GB). We also test the impact
of batching: in CPU and Smart NIC, we process requests
in a batch to improve memory access efficiency [98]. In
RAMBDA, since the APU can already exploit the memory-level
parallelism across requests [85, 103, 168, 171], request
batching is not needed; instead, we batch the doorbell signals
to the RNIC [77] when posting RDMA operations for response.
These configurations resemble prior work [77, 89, 94, 98].

Avg 99th Tail
0

5

10

15

20

25

Avg 99th Tail
0

5

10

15

20

25

Fig. 9: Latency performance of different KVS designs on
the 100% GET workload. The batch size of 32 is applied.
RAMBDA-LD/LH’s tail latency is inapplicable.

1 4 16 32

0

10

20

30

40

1 4 16 32

5

6

7

8

1 4 16 32

0

5

10

15

20

Fig. 10: The impact of batch size on throughput and
latency (100% GET workload, Zipfian 0.9 distribution).
RAMBDA-LD/LH’s tail latency is inapplicable.

We first show each design’s peak performance (with batch
size 32). Fig. 8 shows throughput; we find that the request
distribution significantly affects Smart NIC’s performance.
With a uniform distribution (i.e., more than 90% memory
accesses are to the host via PCIe), throughput is 27.2%–28.6%
of that with a skewed Zipfian distribution (i.e., most memory
accesses are local). And even the throughput with Zipfian
distribution is only ∼60% of that with pure on-board memory
accesses. Conversely, the distribution does not affect CPU
and RAMBDA’s performance, since even with the Zipfian
distribution, the KVS’s memory footprint is larger than the
CPU or FPGA’s cache. Second, we observe that RAMBDA’s
peak throughput is 2.3%∼8.3% higher than CPU. This is
because the peak KVS throughput is bounded by the network
bandwidth now, and RAMBDA’s one-sided RDMA performs
a little better than CPU’s two-sided RDMA, which is aligned
with prior studies [75, 118]. The throughput of RAMBDA-LD
and RAMBDA-LH demonstrate this as well – extra memory
bandwidth does not help improve performance (in fact, the
UPI link is not saturated), since the network has reached
its limit. Note that, having higher network bandwidth, using
more CPU cores can still saturate it, as long as there is little
dependency/contention across requests. And CPU’s throughput
may still be similar to RAMBDA’s, as RAMBDA accelerator
is not saturated now. So we believe the current data under
25GbE can faithfully reflect CPU and RAMBDA’s difference.

Regarding latency, taking the 100% GET workload as an
example (Fig. 9), Smart NIC’s performance is again affected
by the request distribution. The PCIe link adds significant
latency even if the accesses are batched. Meanwhile, we
observe that RAMBDA’s average latency is a bit higher than
CPU. This is mainly because, unlike CPU, RAMBDA needs
to access data through the UPI link, adding more time on the

TABLE III: Overall power efficiency of different KVS
approaches with GET operations in uniform distribution.

CPU Smart NIC RAMBDA

Kop/W 130.4 25.2 188.7

request processing critical path. This deficiency is overcome
with RAMBDA-LD/LH’s accelerator-attached memory – it only
goes through the UPI to interact with the RNIC. Note that due
to HBM’s nature, RAMBDA-LH has a higher average latency
than RAMBDA-LD since the workload is no longer bounded
by memory bandwidth. For tail latency, RAMBDA is 52.0%
lower than Smart NIC and 30.1% lower than CPU, because
it not only mitigates PCIe overhead, but also has more stable
behavior than the CPU core, whose performance is affected
by factors like OS scheduling and CPU resource contention.

We also investigate the impact of the batch size on
each design and demonstrate the results in Fig. 10 (since
the KVS throughput is now network-bound, we do not
include RAMBDA-LD/LH’s throughput as they are the same as
RAMBDA). For CPU and Smart NIC, batching can significantly
improve throughput (e.g., ∼ 12×) – by batching the data
accesses across requests, the memory bandwidth is efficiently
utilized and the memory/PCIe latency is hidden. RAMBDA’s
throughput also benefits from batching (i.e., ∼2×) by reducing
MMIO-based doorbell access [48, 77] and surrounding sfence

signals from the RAMBDA cc-accelerator, which is relatively
expensive. On the other hand, unlike CPU and Smart NIC,
RAMBDA’s latency sub-linearly increases with batch size. This
is because RAMBDA does not need to wait for the batch size
of arrived requests to start processing, and the RNIC may
execute the WQE promptly before the doorbell is rung [106].

Finally, we use the Intel RAPL interface [127] (for CPU and
DIMMs), IPMI tool (for the entire server box), and the FPGA’s
firmware (for the FPGA chip) to measure power consumption.
Take the case in Fig. 8 as an example. We find that the CPU and
Smart NIC’s Intel/ARM CPUs consume ∼90 Watts and ∼15
Watts respectively when fully loaded, while RAMBDA’s FPGA
power is in the range of 24–27W to achieve peak throughput.
This demonstrates RAMBDA cc-accelerator’s ∼ 3× power
efficiency over the beefy Intel CPU to achieve comparable
performance; although the absolute power value of RAMBDA
is ∼2× higher than the Smart NIC, it still has a significant op
per watt advantage, as demonstrated in Tab. III. All these lead
to ∼38% power consumption reduction of the entire server box.

C. Distributed Transaction with NVM-based Chain Replication

We compare RAMBDA with HyperLoop [83] since their results
show that their mechanism outperforms CPU-based chain
replication, especially in multi-tenant cloud environments.
Following HyperLoop’s example, we adopt RocksDB [44], a
persistent key-value database, to use the emulated NVM (see
Sec. VI-A) as a persistent storage medium for RAMBDA and
HyperLoop. Since HyperLoop modifies the RNIC’s firmware,
which is not open-source, we use the ARM cores on the Smart
NIC to emulate its behavior. We disable DDIO on the server.

Port 0

Port 1

Client

Port 0

Port 1

Server
1

2

3

4
Host CPU

S. NIC ARM

S. NIC ARM/RAMBDA

S. NIC ARM/RAMBDA

Fig. 11: Emulated 2-node replication; the Smart NIC (S. NIC
in the figure) ARM in the client simply forwards data from
port 0 to port 1, and the Smart NIC ARM/RAMBDA accelerator
is separated to handle traffic from port 0 and 1 independently.

Avg 99th Tail
0

20

40

60

80

Avg 99th Tail
0

20

40

60

80

Avg 99th Tail
0

20

40

60

80

Avg 99th Tail
0

20

40

60

80

Fig. 12: Latency comparison with different key-value pair
size and transactions with different numbers of (read,write).

As with previous experiments, we run the experiments on one
client and one server. We use the two ports on the Smart NIC
to have two replica machines (instances) in the same physical
server; transactions are forwarded between the ports, as shown
in Fig. 11. The client’s host CPU initiates a transaction
and sends it to the server’s port 0 (1). The corresponding
processing unit (either a Smart NIC ARM core or RAMBDA)
forwards the transaction to the client’s Smart NIC ARM via
port 0, which is attached to a RocksDB instance (2). The
client’s Smart NIC ARM routes the transaction to the server’s
port 1, where another RocksDB instance (and the corresponding
processing unit) serves as the second replica (3). Finally,
the transaction is sent back to the client’s host CPU (4). Our
measurements show that the ARM-based routing adds 2∼3µs
overhead, which resembles datacenter network latencies.

We initiate RocksDB with 100K key-value pairs and issue
100K transactions from the client to measure end-to-end
latency. We test two key-value pair sizes (64B and 1024B) and
two types of transactions with different (read, write) counts
((0,1) and (4,2), representative of real-world transactional
systems [78]). Since the RAMBDA Tx and HyperLoop have
identical mechanisms for pure-read transactions, we exclude
such transactions from the evaluation.

We show latency results in Fig. 12 (note that since the
transactions are issued by the client one by one, the latency
improvement also reflects throughput improvements). For the
(0,1) transaction, RAMBDA’s performance does not differ from
HyperLoop, since they experience the same overhead – one
PCIe round-trip per replica machine and one round-trip over
the 2-machine replication chain; RAMBDA may even be a bit
(less than 3%) slower than HyperLoop since it also has the
overhead of UPI link. However, when the transaction contains
multiple operations, RAMBDA begins to show its advantage.

Unlike HyperLoop, RAMBDA’s client only needs to issue one
combined transaction request to the replication chain, and the
RAMBDA accelerator will handle the transaction execution and
chain replication protocol itself in a near-data manner – still one
PCIe round-trip per machine and one round-trip over the chain.
This saves network and PCIe latency, offering a 63.2%∼66.8%
reduction for average end-to-end latency and 64.5%∼69.1% for
99th tail latency. Note that RAMBDA’s latency can be further re-
duced with accelerators (FPGA) directly attached to NVM [68].

D. DLRM Inference

We base our experiments on MERCI [92] and facebook’s
DLRM model [115]. Since their open-source ones include
single-machine versions only, we extend them to an RDMA-
based end-to-end application (the networking part is similar
to the optimized HERD [77]) to reflect a real deployment.

We follow the configurations in the MERCI paper [92] for
our evaluation. We compare RAMBDA with the CPU-based
software version on the popular Amazon Review dataset [60]
(electronics, clothing-shoe-jewelry, home-kitchen, books, sports-
outdoors, and office-products). Both the native embedding
reduction and MERCI reduction are evaluated. The data is clus-
tered and loaded into embedding and memoization tables by the
CPU in MERCI’s way. The embedding dimension is set to the
default value of 64; for MERCI reduction, we build memoiza-
tion tables with 0.25× the size of the original embedding tables.

Since query lengths (number of features) in the dataset are
diverse, it is unfair to measure the per-query latency, so we only
measure the throughput. For brevity, we only show the results
of inference with MERCI reduction in Fig. 13 because the ones
with native reduction show the same trend. The CPU-based ver-
sion of MERCI scales linearly until eight cores (threads), which
is bounded by the host memory bandwidth. For RAMBDA,
however, we find poor throughput performance over all the
datasets – only 19.7%∼31.3% throughput of a single CPU core.
After further analysis, we find this phenomenon is because (1)
unlike KVS, the nature of the embedding reduction in DLRM
(i.e., pure and dense memory accesses within nested “for” loops,
few branches, thousands of memory accesses per query) makes
it relatively efficient on the CPU core – the instruction window
and the load-store queue can be fully utilized; (2) the CPU core
can leverage the entire bandwidth of the memory channels (i.e.,
∼120GB/s on our testbed) with good parallelism, while the
RAMBDA cc-accelerator can only leverage the cc-interconnect’s
bandwidth, and the memory requests have to be issued serially
from the FPGA’s wimpy coherence controller (also observed
in [42]); (3) the compute-intensive fully connected layer is rel-
atively lightweight in the model, making RAMBDA’s hardware
acceleration only a small portion in the end-to-end inference.
Hence, with higher frequency and memory bandwidth, CPU
outperforms the RAMBDA cc-accelerator. This deficiency can
be solved by RAMBDA-LD and RAMBDA-LH, the future cc-
accelerator we envision. Fully utilizing the two DDR4 channels
(∼ 1

3 of the CPU memory channels’ bandwidth), RAMBDA-
LD is able to achieve 52.8%∼95.3% throughput of the eight
CPU cores. Furthermore, the 32-channel HBM2 eliminates

Electro. Clothing Home. Books Sports. Office.

10
2

10
3

10
4

Fig. 13: MERCI-based DLRM inference throughput on the Amazon Review dataset.

the memory bandwidth bottleneck in the reduction, leading
to RAMBDA-LH’s 1.6×∼3.1× throughput improvement over
the CPU [172], and the RDMA network becomes the limiting
factor for higher end-to-end throughput. Note that, CPUs with
integrated HBM2 [31] in the near future may also achieve
similar throughput compared to RAMBDA-LH; but similar to
KVS (see Sec. VI-B), even with the same memory bandwidth
(and thus the inference throughput), RAMBDA cc-accelerator
shows better power efficiency over the CPU-based reduction.

VII. RELATED WORK

Accelerating µs-scale datacenter applications with emerging
devices. In modern datacenters, commodity networking devices,
especially programmable switches and Smart NICs, have
been leveraged to accelerate datacenter applications. Such
approaches include caching [73, 94, 101, 142], compute
offloading [7, 17, 57, 93, 94, 107, 139, 140, 145], protocol
offloading [36, 37, 72, 83, 91, 95–97, 134, 141, 157, 169, 179],
etc. However, due to the limited memory capacity of such
devices (e.g., O(10MB) of on-chip SRAM for programmable
switches [1, 82] and O(10GB) of on-board DRAM for Smart
NICs [100, 119]), they may fall short of efficiently handling
datacenter applications requiring large memory footprints.
Also, extending the memory space to the host side [82, 173]
can only handle simple/customized data structures.

To alleviate interconnect (PCIe) overhead, some research
integrates the entire NIC or accelerator to/near the CPU
package [3, 23, 34, 35, 56, 62, 80, 99, 117, 135, 149]. While
this provides fast NIC-core interaction, it also has (1) high
design and manufacturing cost and (2) low flexibility. For
example, a NIC ASIC’s die area can be more than 60mm2 [1],
which is roughly the area of four server CPU cores [163].
But network upgrades would require replacing server CPUs
too, leading to high total cost of ownership. Dagger [89] also
leverages cc-accelerator for NIC design, but still involves
the server CPU for request processing, and only uses the
cc-interconnect for lower latency over PCIe.

Compared to these works, RAMBDA takes a modularized
design with low TCO towards a framework for general
memory-intensive distributed application acceleration, while
still leveraging cache coherence to more efficiently handle
applications with irregular/uniform memory access patterns.

Also, RAMBDA is not mutual-exclusive with these works, as our
goal is to make the most out of each component in the system.

Some prior work accelerates applications in datacenters
with cc-accelerators [21, 42, 61, 89, 104, 126, 144], but
they either accelerate single-machine applications/operations
or a specific routine/layer in the system. RAMBDA takes a
holistic cross-stack approach to achieve end-to-end datacenter
application offloading at µs-scale.
NIC-host co-design framework. With the growing popular-
ity of Smart NICs, researchers have developed frameworks
to schedule/offload datacenter applications to their proces-
sors [100, 102, 130]. However, they are still constrained to
separate the Smart NIC and host’s memory to two domains and
memory-intensive code suffers from high PCIe latency when of-
floaded. RAMBDA tackles these challenges with its unique near-
data processing capability, while keeping the networking part
offloaded on the RNIC for low cost and flexibility. Lynx [154]
proposes Smart NIC-based communication offloading for
accelerator-rich systems, and FlexDriver [41] proposes PCIe-
based NIC control by accelerators. RAMBDA takes one step fur-
ther to let the client directly communicate with the accelerators.

VIII. CONCLUSION

We present RAMBDA, a holistic system design to offload
modern µs-scale datacenter applications. It leverages the
RDMA and cc-accelerator technologies to achieve high
throughput and low latency performance with minimal CPU
involvement. We apply RAMBDA to three representative
datacenter applications. Our evaluation on a real system shows
that, compared with CPU- and NIC-based offloading solutions,
RAMBDA achieves better and more stable performance with
higher power efficiency.

ACKNOWLEDGMENT

We would like to thank Narayan Ranganathan, Nikhil Rao,
Rajesh Sankaran, as well as the anonymous reviewers for their
insightful and helpful information and feedback. We also thank
Yixiao Gao, Nikita Lazarev, Jiacheng Ma, Shaojie Xiang,
and Zeran Zhu for their technical support and discussion.
This research is supported by National Science Foundation
(No. CNS-1705047), Intel Corporation’s Academic research
funding, and NVIDIA device donation. Nam Sung Kim has
a financial interest in Samsung.

REFERENCES

[1] “Private communication with Intel,” 2021.
[2] B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood,

“Understanding training efficiency of deep learning recommendation
models at scale,” in Proceedings of the 2021 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA’21), 2021.

[3] M. Alian and N. S. Kim, “NetDIMM: Low-latency near-memory
network interface architecture,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’19),
2019.

[4] M. Alian, Y. Yuan, J. Zhang, R. Wang, M. Jung, and N. S. Kim,
“Data direct I/O characterization for future I/O system exploration,” in
Proceedings of the 2020 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS’20), 2020.

[5] S. Almeida, J. a. Leitão, and L. Rodrigues, “Chainreaction: A causal+
consistent datastore based on chain replication,” in Proceedings of the
8th ACM European Conference on Computer Systems (EuroSys’13),
2013.

[6] M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin,
“BBB: Simplifying persistent programming using battery-backed
buffers,” in Proceedings of the 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA’21), 2021.

[7] E. Amaro, Z. Luo, A. Ousterhout, A. Krishnamurthy, A. Panda, S. Rat-
nasamy, and S. Shenker, “Remote memory calls,” in Proceedings of the
19th ACM Workshop on Hot Topics in Networks (HotNets’20), 2020.

[8] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, “FAWN: A fast array of wimpy nodes,” in Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP’09), 2009.

[9] B. Asgari, R. Hadidi, J. Cao, D. E. Shim, S.-K. Lim, and H. Kim,
“FAFNIR: Accelerating sparse gathering by using efficient near-memory
intelligent reduction,” in Proceedings of the 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA’21),
2021.

[10] AWS, “Elastic Fabric Adapter – Run HPC and ML applications at scale,”
https://aws.amazon.com/hpc/efa/.

[11] G. Bablani, “Introducing new product innovations for SAP HANA,
expanded AI collaboration with SAP and more,”
https://azure.microsoft.com/en-us/blog/introducing-new-product-
innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-
more/, 2019.

[12] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei,
and J. D. Davis, “CORFU: A shared log design for flash clusters,”
in Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’12), 2012.

[13] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the
killer microseconds,” Communications of the ACM, vol. 60, no. 4, 2017.

[14] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, 2007.

[15] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A protected dataplane operating system for high
throughput and low latency,” in Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’14), 2014.

[16] S. Blanas, “From FLOPS to IOPS: The new bottlenecks of scientific
computing,”
https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-
scientific-computing/, 2020.

[17] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István, “Achieving
10Gbps line-rate key-value stores with FPGAs,” in Proceedings of
the 5th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud’13), 2013.

[18] N. Boden, “Available first on Google Cloud: Intel Optane DC persistent
memory,”
https://cloud.google.com/blog/topics/partners/available-first-on-
google-cloud-intel-optane-dc-persistent-memory, 2018.

[19] M. Burke, S. Dharanipragada, S. Joyner, A. Szekeres, J. Nelson,
I. Zhang, and D. R. K. Ports, “PRISM: Rethinking the RDMA interface
for distributed systems,” in Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP’21), 2021.

[20] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal,
“Understanding host network stack overheads,” in Proceedings of the
2021 ACM SIGCOMM conference (SIGCOMM’21), 2021.

[21] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu,
and A. Kolli, “Rethinking software runtimes for disaggregated
memory,” in Proceedings of the 26th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS’21), 2021.

[22] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u.
Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli,
M. McNett, S. Sankaran, K. Manivannan, and L. Rigas, “Windows
Azure storage: A highly available cloud storage service with strong
consistency,” in Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP’11), 2011.

[23] H. Caminal, Y. Chronis, T. Wu, J. M. Patel, and J. F. Martínez,
“Accelerating database analytic query workloads using an associative
processor,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture (ISCA’22), 2022.

[24] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,”
in Proceedings of the 49th IEEE/ACM International Symposium on
Microarchitecture (MICRO’16), 2016.

[25] CCIX Consortium, “CCIX,”
https://www.ccixconsortium.com.

[26] S. J. Chen, Z. Qin, Z. Wilson, B. Calaci, M. Rose, R. Evans,
S. Abraham, D. Metzler, S. Tata, and M. Colagrosso, “Improving
recommendation quality in Google Drive,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’20), 2020.

[27] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen, “Fast and general
distributed transactions using RDMA and HTM,” in Proceedings of the
11th European Conference on Computer Systems (EuroSys’16), 2016.

[28] Y. Chen, Y. Lu, and J. Shu, “Scalable RDMA RPC on reliable
connection with efficient resource sharing,” in Proceedings of the 14th
EuroSys Conference (EuroSys’19), 2019.

[29] Y.-K. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei,
“In-depth analysis on microarchitectures of modern heterogeneous CPU-
FPGA platforms,” ACM Transactions on Reconfigurable Technology
Systems, vol. 12, no. 1, 2019.

[30] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He,
N. Hossle, D. Korolija, M. Licciardello, K. Martsenko, R. Achermann,
G. Alonso, and T. Roscoe, “Enzian: An open, general, CPU/FPGA
platform for systems software research,” in Proceedings of the 27th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’22), 2022.

[31] I. Cutress, “Intel to Launch Next-Gen Sapphire Rapids Xeon with
High Bandwidth Memory,”
https://www.anandtech.com/show/16795/intel-to-launch-next-gen-
sapphire-rapids-xeon-with-high-bandwidth-memory, 2021.

[32] I. Cutress, “Using a PCIe slot to install DRAM: New Samsung
CXL.mem expansion module,”
https://www.anandtech.com/show/16670/using-a-pcie-slot-to-install-
dram-new-samsung-cxlmem-expansion-module, 2021.

[33] CXL Consortium, “Compute express link (CXL),”
https://www.computeexpresslink.org.

[34] A. Daglis, S. Novaković, E. Bugnion, B. Falsafi, and B. Grot,
“Manycore network interfaces for in-memory rack-scale computing,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA’15), 2015.

[35] A. Daglis, M. Sutherland, and B. Falsafi, “RPCValet: NI-driven
tail-aware balancing of µs-scale RPCs,” in Proceedings of the 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19), 2019.

[36] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, H. Weatherspoon,
M. Canini, F. Pedone, and R. Soulé, “Network hardware-accelerated
consensus,” Università della Svizzera italiana, Tech. Rep. USI-INF-
TR-2016-03, 2016.

[37] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, H. Weatherspoon,
M. Canini, N. Zilberman, F. Pedone, and R. Soulé, “P4xos: Consensus
as a network service,” Università della Svizzera italiana, Tech. Rep.
USI-INF-TR-2018-01, 2018.

[38] J. Dean, D. Patterson, and C. Young, “A new golden age in computer
architecture: Empowering the machine-learning revolution,” IEEE

https://aws.amazon.com/hpc/efa/
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-scientific-computing/
https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-scientific-computing/
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://www.ccixconsortium.com
https://www.anandtech.com/show/16795/intel-to-launch-next-gen-sapphire-rapids-xeon-with-high-bandwidth-memory
https://www.anandtech.com/show/16795/intel-to-launch-next-gen-sapphire-rapids-xeon-with-high-bandwidth-memory
https://www.anandtech.com/show/16670/using-a-pcie-slot-to-install-dram-new-samsung-cxlmem-expansion-module
https://www.anandtech.com/show/16670/using-a-pcie-slot-to-install-dram-new-samsung-cxlmem-expansion-module
https://www.computeexpresslink.org

Micro, vol. 38, 2018.
[39] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast

remote memory,” in Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’14), 2014.

[40] A. Eisenman, M. Naumov, D. Gardner, M. Smelyanskiy, S. Pupyrev,
K. Hazelwood, A. Cidon, and S. Katti, “Bandana: Using non-volatile
memory for storing deep learning models,” in Proceedings of the 2nd
SysML Conference (SysML’19), 2019.

[41] H. Eran, M. Fudim, G. Malka, G. Shalom, N. Cohen, A. Hermony,
D. Levi, L. Liss, and M. Silberstein, “FlexDriver: A network driver
for your accelerator,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’22), 2022.

[42] Z. F. Eryilmaz, A. Kakaraparthy, J. M. Patel, R. Sen, and K. Park,
“FPGA for aggregate processing: The good, the bad, and the ugly,”
in Proceedings of the IEEE 37th International Conference on Data
Engineering (ICDE’21), 2021.

[43] R. Escriva, B. Wong, and E. G. Sirer, “HyperDex: A distributed,
searchable key-value store,” in Proceedings of the ACM SIGCOMM
2012 Conference (SIGCOMM’12), 2012.

[44] Facebook, “RocksDB: A persistent key-value store for fast storage
environments,”
https://rocksdb.org.

[45] B. Falsafi, R. Guerraoui, J. Picorel, and V. Trigonakis, “Unlocking
energy,” in Proceedings of the 2016 USENIX Annual Technical
Conference (ATC’16), 2016.

[46] A. Farshin, A. Roozbeh, G. Q. Maguire Jr., and D. Kostić, “Make the
most out of last level cache in Intel processors,” in Proceedings of the
14th European Conference on Computer Systems (EuroSys’19), 2019.

[47] A. Farshin, A. Roozbeh, G. Q. Maguire Jr., and D. Kostić, “Reexamining
direct cache access to optimize I/O intensive applications for multi-
hundred-gigabit networks,” in Proceedings of 2020 USENIX Annual
Technical Conference (ATC’20), 2020.

[48] M. Flajslik and M. Rosenblum, “Network interface design for low
latency request-response protocols,” in Proceedings of the 2013
USENIX Annual Technical Conference (ATC’13), 2013.

[49] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,
L. Yan, F. Feng, Y. Zhuang, F. Liu, P. Liu, X. Liu, Z. Wu, J. Wu, Z. Cao,
C. Tian, J. Wu, J. Zhu, H. Wang, D. Cai, and J. Wu, “When cloud
storage meets RDMA,” in Proceedings of the 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’21), 2021.

[50] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), 2003.

[51] S. D. Glasser and M. D. Hummel, “Methods and apparatus for
implementing PCI express lightweight notification protocols in a
CPU/memory complex,” 2013, US Patent 20130173837A1.

[52] H. Golestani, A. Mirhosseini, and T. F. Wenisch, “Software data planes:
You can’t always spin to win,” in Proceedings of the 2019 ACM
Symposium on Cloud Computing (SoCC’19), 2019.

[53] D. Gope, D. J. Schlais, and M. H. Lipasti, “Architectural support for
server-side PHP processing,” in Proceedings of the 44th IEEE/ACM
International Symposium on Computer Architecture (ISCA’17), 2017.

[54] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct access, High-
Performance memory disaggregation with DirectCXL,” in Proceedings
of the 2022 USENIX Annual Technical Conference (ATC’22), 2022.

[55] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over commodity Ethernet at scale,” in Proceedings of the 2016
ACM SIGCOMM Conference (SIGCOMM’16), 2016.

[56] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” in Proceedings
of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’22), 2022.

[57] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Will-
inger, “Sonata: Query-driven streaming network telemetry,” in Proceed-
ings of the 2018 ACM SIGCOMM Conference (SIGCOMM’18), 2018.

[58] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S.
Lee, D. Brooks, and C.-J. Wu, “DeepRecSys: A system for optimizing
end-to-end at-scale neural recommendation inference,” in Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA’20), 2020.

[59] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee,
A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang,

“The architectural implications of Facebook’s DNN-based personalized
recommendation,” in Proceedings of the 2020 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA’20), 2020.

[60] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in Proceedings
of the 25th International Conference on World Wide Web (WWW’16),
2016.

[61] R. Hwang, T. Kim, Y. Kwon, and M. Rhu, “Centaur: A chiplet-based,
hybrid sparse-dense accelerator for personalized recommendations,” in
Proceedings of the ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA’20), 2020.

[62] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim,
and N. McKeown, “The nanoPU: A nanosecond network stack for
datacenters,” in Proceedings of the 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’21), 2021.

[63] Intel Corporation, “Data plane development kit (DPDK),”
https://www.dpdk.org.

[64] Intel Corporation, “eADR: New opportunities for persistent memory
applications,”
https://software.intel.com/content/www/us/en/develop/articles/eadr-
new-opportunities-for-persistent-memory-applications.html.

[65] Intel Corporation, “Intel 64 and IA-32 architectures software developer’s
manual volume 2: Instruction set reference,”
https://software.intel.com/content/www/us/en/develop/download/intel-
64-and-ia-32-architectures-sdm-combined-volumes-2a-2b-2c-and-2d-
instruction-set-reference-a-z.html.

[66] Intel Corporation, “Intel Arria 10 GX 1150 FPGA,”
https://ark.intel.com/content/www/us/en/ark/products/210381/intel-
arria-10-gx-1150-fpga.html.

[67] Intel Corporation, “Intel Optane Persistent Memory,”
https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html.

[68] Intel Corporation, “Intel Stratix 10 DX FPGAs,”
https://www.intel.com/content/www/us/en/products/details/fpga/
stratix/10/dx.html.

[69] Intel Corporation, “Intel Xeon Gold 6138P Processor,”
https://ark.intel.com/content/www/us/en/ark/products/139940/intel-
xeon-gold-6138p-processor-27-5m-cache-2-00-ghz.html.

[70] Intel Corporation, “Intel® data direct I/O (DDIO),”
https://www.intel.com/content/www/us/en/io/data-direct-i-o-
technology.html.

[71] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mTCP: A highly scalable user-level TCP stack for multicore
systems,” in Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’14), 2014.

[72] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and
I. Stoica, “NetChain: Scale-free sub-RTT coordination,” in Proceedings
of the 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’18), 2018.

[73] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “NetCache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP’17), 2017.

[74] A. Kalia, D. Andersen, and M. Kaminsky, “Challenges and solutions
for fast remote persistent memory access,” in Proceedings of the 11th
ACM Symposium on Cloud Computing (SoCC’20), 2020.

[75] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be
general and fast,” in Proceedings of the 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’19), 2019.

[76] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in Proceedings of the 2014 ACM SIGCOMM
Conference (SIGCOMM’14), 2014.

[77] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines
for high performance RDMA systems,” in Proceedings of the 2016
USENIX Annual Technical Conference (ATC’16), 2016.

[78] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram
RPCs,” in Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16), 2016.

[79] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in Proceedings of the 42nd IEEE/ACM International Symposium on
Computer Architecture (ISCA’15), 2015.

[80] S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolic,

https://rocksdb.org
https://www.dpdk.org
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-2a-2b-2c-and-2d-instruction-set-reference-a-z.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-2a-2b-2c-and-2d-instruction-set-reference-a-z.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-2a-2b-2c-and-2d-instruction-set-reference-a-z.html
https://ark.intel.com/content/www/us/en/ark/products/210381/intel-arria-10-gx-1150-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210381/intel-arria-10-gx-1150-fpga.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/dx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/dx.html
https://ark.intel.com/content/www/us/en/ark/products/139940/intel-xeon-gold-6138p-processor-27-5m-cache-2-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/139940/intel-xeon-gold-6138p-processor-27-5m-cache-2-00-ghz.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html

K. Asanovic, and P. Ranganathan, “A hardware accelerator for protocol
buffers,” in Proceedings of the 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’21), 2021.

[81] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li,
B. Maher, D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy,
X. Wang, B. Reagen, C.-J. Wu, M. Hempstead, and X. Zhang,
“RecNMP: Accelerating personalized recommendation with near-
memory processing,” in Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA’20), 2020.

[82] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan,
“TEA: Enabling state-intensive network functions on programmable
switches,” in Proceedings of the 2020 ACM SIGCOMM Conference
(SIGCOMM’20), 2020.

[83] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye,
S. Raindel, S. Swanson, V. Sekar, and S. Seshan, “HyperLoop:
Group-based NIC-offloading to accelerate replicated transactions
in multi-tenant storage systems,” in Proceedings of the 2018 ACM
SIGCOMM conference (SIGCOMM’18), 2018.

[84] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter,
and E. Witchel, “LineFS: Efficient SmartNIC offload of a distributed file
system with pipeline parallelism,” in Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP’21), 2021.

[85] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan,
“Meet the walkers: Accelerating index traversals for in-memory
databases,” in Proceedings of the 46th IEEE/ACM International
Symposium on Microarchitecture (MICRO’13), 2013.

[86] H. T. Kung, T. Blackwell, and A. Chapman, “Credit-based flow
control for ATM networks: Credit update protocol, adaptive credit
allocation and statistical multiplexing,” in Proceedings of the 1994
ACM SIGCOMM Conference (SIGCOMM’94), 1994.

[87] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“NetCAT: Practical cache attacks from the network,” in Proceedings of
the 41st IEEE Symposium on Security and Privacy (Oakland’20), 2020.

[88] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’19), 2019.

[89] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger:
Efficient and fast RPCs in cloud microservices with near-memory
reconfigurable NICs,” in Proceedings of the 26th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’21), 2021.

[90] Y. Le, M. Malekpourshahraki, B. Stephens, A. Akella, and M. M. Swift,
“On the impact of cluster configuration on RoCE application design,”
in Proceedings of the 3rd Asia-Pacific Workshop on Networking
(APNet’19), 2019.

[91] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and
A. Bhattacharjee, “MIND: In-network memory management for
disaggregated data centers,” in Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP’21), 2021.

[92] Y. Lee, S. H. Seo, H. Choi, H. U. Sul, S. Kim, J. W. Lee, and T. J.
Ham, “MERCI: Efficient embedding reduction on commodity hardware
via sub-query memoization,” in Proceedings of the 26th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’21), 2021.

[93] A. Lerner, R. Hussein, and P. Cudre-Mauroux, “The case for network
accelerated query processing,” in Proceedings of the 9th Biennial
Conference on Innovative Data Systems Research (CIDR’19), 2019.

[94] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “KV-Direct: High-performance in-memory key-value store
with programmable NIC,” in Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP’17), 2017.

[95] J. Li, E. Michael, and D. R. K. Ports, “Eris: Coordination-free
consistent transactions using in-network concurrency control,” in
Proceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP’17), 2017.

[96] J. Li, E. Michael, A. Szekeres, N. K. Sharma, and D. R. K. Ports,
“Just say NO to Paxos overhead: Replacing consensus with network
ordering,” in Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16), 2016.

[97] J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports, “Pegasus:
Tolerating skewed workloads in distributed storage with in-network
coherence directories,” in Proceedings of the 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI’20), 2020.
[98] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A

holistic approach to fast in-memory key-value storage,” in Proceedings
of the 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’14), 2014.

[99] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: Designing SoC accelerators for
Memcached,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA’13), 2013.

[100] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto SmartNICs using iPipe,” in
Proceedings of the 2019 ACM SIGCOMM conference (SIGCOMM’19),
2019.

[101] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“IncBricks: Toward in-network computation with an in-network
cache,” in Proceedings of the 22nd International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS’17), 2017.

[102] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana, “E3:
Energy-efficient microservices on SmartNIC-accelerated servers,”
in Proceedings of the 2019 USENIX Annual Technical Conference
(ATC’19), 2019.

[103] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, “Livia: Data-centric computing
throughout the memory hierarchy,” in Proceedings of the 25th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’20), 2020.

[104] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew,
Z. Qi, and B. Kasikci, “A hypervisor for shared-memory FPGA
platforms,” in Proceedings of the 25th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS’20), 2020.

[105] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-aware
performance prediction for virtualized network functions,” in Proceed-
ings of the 2020 ACM SIGCOMM Conference (SIGCOMM’20), 2020.

[106] Mellanox, “Mellanox adapters programmer’s reference manual (PRM),”
https://www.mellanox.com/related-docs/user_manuals/
Ethernet_Adapters_Programming_Manual.pdf.

[107] Mellanox, “Mellanox scalable hierarchical aggregation and reduction
protocol (SHARP),”
http://www.mellanox.com/page/products_dyn?product_family=
261&mtag=sharp.

[108] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan,
K. Strauss, and S. Swanson, “Atomic in-place updates for non-volatile
main memories with Kamino-Tx,” in Proceedings of the 12th European
Conference on Computer Systems (EuroSys’17), 2017.

[109] A. Mirhosseini, H. Golestani, and T. F. Wenisch, “HyperPlane: A
scalable low-latency notification accelerator for software data planes,”
in Proceedings of the 53rd IEEE/ACM International Symposium on
Microarchitecture (MICRO’20), 2020.

[110] A. Mirhosseini, A. Sriraman, and T. F. Wenisch, “Enhancing server
efficiency in the face of killer microseconds,” in Proceedings of the
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA’19), 2019.

[111] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to
build a fast, CPU-efficient key-value store,” in Proceedings of the 2013
USENIX Annual Technical Conference (ATC’13), 2013.

[112] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li, “Balancing
CPU and network in the Cell distributed B-Tree store,” in Proceedings
of the 2016 USENIX Annual Technical Conference (ATC’16), 2016.

[113] S. K. Monga, S. Kashyap, and C. Min, “Birds of a feather flock together:
Scaling RDMA RPCs with Flock,” in Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP’21), 2021.

[114] mongoDB, “mongoDB manual: Manage chained replication,”
https://docs.mongodb.com/manual/tutorial/manage-chained-
replication/.

[115] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park,
X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A. Malle-
vich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko,
S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyan-
skiy, “Deep learning recommendation model for personalization and
recommendation systems,” arXiv preprint arXiv:1906.00091, 2019.

[116] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore, “Understanding PCIe performance for end host

https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
http://www.mellanox.com/page/products_dyn?product_family=261&mtag=sharp
http://www.mellanox.com/page/products_dyn?product_family=261&mtag=sharp
https://docs.mongodb.com/manual/tutorial/manage-chained-replication/
https://docs.mongodb.com/manual/tutorial/manage-chained-replication/

networking,” in Proceedings of the 2018 ACM SIGCOMM Conference
(SIGCOMM’18), 2018.

[117] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out
NUMA,” in Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS’14), 2014.

[118] S. Novakovic, Y. Shan, A. Kolli, M. Cui, Y. Zhang, H. Eran, B. Pismenny,
L. Liss, M. Wei, D. Tsafrir, and M. Aguilera, “Storm: A fast transactional
dataplane for remote data structures,” in Proceedings of the 12th ACM
International Conference on Systems and Storage (SYSTOR’19), 2019.

[119] NVIDIA Corporation, “NVIDIA BlueField-2 DPU: Data center
infrastructure on a chip,”
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf.

[120] NVIDIA Corporation, “RDMA aware networks programming user
manual,”
https://docs.mellanox.com/display/RDMAAwareProgrammingv17.

[121] NVIDIA Corporation, “NVIDIA extends data center infrastructure
processing roadmap with BlueField-3,”
https://nvidianews.nvidia.com/news/nvidia-extends-data-center-
infrastructure-processing-roadmap-with-bluefield-3, 2021.

[122] F. Oboril and M. B. Tahoori, “ExtraTime: Modeling and analysis
of wearout due to transistor aging at microarchitecture-level,” in
Proceedings of the 2012 IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’2012), 2012.

[123] H. Ohara, “Revisit DCA, PCIe TPH and DDIO,”
https://www.slideshare.net/hisaki/direct-cacheaccess, 2014.

[124] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum, “Fast crash recovery in RAMCloud,” in Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP’11), 2011.

[125] Optocrypto, “Intel Sapphire Rapids with HBM2E, CXL 1.1, and PCIe
5.0 by end of 2022,”
https://optocrypto.com/intel-sapphire-rapids-with-hbm2e-cxl-1-1-and-
pcie-5-0-by-end-of-2022/.

[126] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A framework
for hybrid CPU-FPGA databases,” in Proceedings of the 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM’17), 2017.

[127] S. Pandruvada, “Running average power limit – RAPL,”
https://01.org/blogs/2014/running-average-power-limit-âĂŞ-rapl.

[128] J. Park, B. Kim, S. Yun, E. Lee, M. Rhu, and J. H. Ahn, “TRiM:
Enhancing processor-memory interfaces with scalable tensor reduction
in memory,” in Proceedings of the 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’21), 2021.

[129] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner, and
W. Belluomini, “Flex-KV: Enabling high-performance and flexible KV
systems,” in Proceedings of the 2012 Workshop on Management of
Big Data Systems (MBDS’12), 2012.

[130] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson, “Floem: A programming system for NIC-accelerated
network applications,” in Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’18), 2018.

[131] B. Pismenny, L. Liss, A. Morrison, and D. Tsafrir, “The benefits of
general-purpose on-NIC memory,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’22), 2022.

[132] PLDA, “Lightweight Notification,”
https://www.plda.com/pcie-glossary/lightweight-notification.

[133] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani,
V. Bruschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda, F. Huici,
and G. Siracusano, “FlowBlaze: Stateful packet processing in hardware,”
in Proceedings of the 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’19), 2019.

[134] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy,
“Designing distributed systems using approximate synchrony in
datacenter networks,” in Proceedings of the 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’15), 2015.

[135] A. Pourhabibi, M. Sutherland, A. Daglis, and B. Falsafi, “Cerebros:
Evading the RPC tax in datacenters,” in Proceedings of the 54th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’21), 2021.

[136] W. Reda, M. Canini, D. Kostic, and S. Peter, “RDMA is Turing
complete, we just did not know it yet!” in Proceedings of the 19th
USENIX Symposium on Networked Systems Design and Implementation

(NSDI’22), 2022.
[137] L. Romanovsky, “mlx5dv – Linux manual page,”

https://man7.org/linux/man-pages/man7/mlx5dv.7.html.
[138] SAP, “How to perform system replication for SAP HANA,”

https://www.sap.com/documents/2013/10/26c02b58-5a7c-0010-82c7-
eda71af511fa.html, 2017.

[139] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis,
“In-network computation is a dumb idea whose time has come,”
in Proceedings of the 16th Workshop on Hot Topics in Networks
(HotNets’17), 2017.

[140] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. R. Ports, and P. Richtárik,
“Scaling distributed machine learning with in-network aggregation,” in
Proceedings of the 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’21), 2021.

[141] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy,
“Xenic: SmartNIC-accelerated distributed transactions,” in Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP’21), 2021.

[142] K. Seemakhupt, S. Liu, Y. Senevirathne, M. Shahbaz, and S. Khan, “PM-
Net: In-network data persistence,” in Proceedings of the 48th IEEE/ACM
International Symposium on Computer Architecture (ISCA’21), 2021.

[143] L. Shalev, H. Ayoub, N. Bshara, and E. Sabbag, “A cloud-optimized
transport protocol for elastic and scalable HPC,” IEEE Micro, vol. 40,
no. 6, 2020.

[144] D. Sidler, Z. István, M. Owaida, and G. Alonso, “Accelerating pattern
matching queries in hybrid CPU-FPGA architectures,” in Proceedings
of the 2017 ACM International Conference on Management of Data
(SIGMOD’17), 2017.

[145] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “StRoM:
Smart remote memory,” in Proceedings of the 15th European
Conference on Computer Systems (EuroSys’20), 2020.

[146] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch, M. Wong-Chan,
S. Clark, M. M. K. Martin, M. McLaren, P. Chandra, R. Cauble,
H. M. G. Wassel, B. Montazeri, S. L. Sabato, J. Scherpelz, and
A. Vahdat, “1RMA: Re-envisioning remote memory access for
multi-tenant datacenters,” in Proceedings of the 2020 ACM SIGCOMM
Conference (SIGCOMM’20), 2020.

[147] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding accelera-
tion opportunities for data center overheads at hyperscale,” in Proceed-
ings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’20), 2020.

[148] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel, “CAPI: A
coherent accelerator processor interface,” IBM Journal of Research
and Development, vol. 59, no. 1, 2015.

[149] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos, and
A. Daglis, “The NeBuLa RPC-optimized architecture,” in Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA’20), 2020.

[150] A. Tai, M. Wei, M. J. Freedman, I. Abraham, and D. Malkhi, “Replex:
A scalable, highly available multi-index data store,” in Proceedings
of the 2016 USENIX Annual Technical Conference (ATC’16), 2016.

[151] T. Talpey, “RDMA persistent meory extensions,”
https://www.openfabrics.org/wp-content/uploads/209_TTalpey.pdf,
2019.

[152] J. Terrace and M. J. Freedman, “Object storage on CRAQ: High-
throughput chain replication for read-mostly workloads,” in Proceedings
of the 2009 USENIX Annual Technical Conference (ATC’09), 2009.

[153] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki,
S. Ratnasamy, and S. Shenker, “ResQ: Enabling SLOs in network
function virtualization,” in Proceedings of 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’18), 2018.

[154] M. Tork, L. Maudlej, and M. Silberstein, “Lynx: A SmartNIC-driven
accelerator-centric architecture for network servers,” in Proceedings
of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’20), 2020.

[155] S.-Y. Tsai and Y. Zhang, “LITE kernel RDMA support for datacenter
applications,” in Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP’17), 2017.

[156] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in Proceedings of the 6th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’04), 2004.

[157] Q. Wang, Y. Lu, E. Xu, J. Li, Y. Chen, and J. Shu, “Concordia:

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://docs.mellanox.com/display/RDMAAwareProgrammingv17
https://nvidianews.nvidia.com/news/nvidia-extends-data-center-infrastructure-processing-roadmap-with-bluefield-3
https://nvidianews.nvidia.com/news/nvidia-extends-data-center-infrastructure-processing-roadmap-with-bluefield-3
https://www.slideshare.net/hisaki/direct-cacheaccess
https://optocrypto.com/intel-sapphire-rapids-with-hbm2e-cxl-1-1-and-pcie-5-0-by-end-of-2022/
https://optocrypto.com/intel-sapphire-rapids-with-hbm2e-cxl-1-1-and-pcie-5-0-by-end-of-2022/
https://01.org/blogs/2014/running-average-power-limit-–-rapl
https://www.plda.com/pcie-glossary/lightweight-notification
https://man7.org/linux/man-pages/man7/mlx5dv.7.html
https://www.sap.com/documents/2013/10/26c02b58-5a7c-0010-82c7-eda71af511fa.html
https://www.sap.com/documents/2013/10/26c02b58-5a7c-0010-82c7-eda71af511fa.html
https://www.openfabrics.org/wp-content/uploads/209_TTalpey.pdf

Distributed shared memory with in-network cache coherence,” in
Proceedings of the 19th USENIX Conference on File and Storage
Technologies (FAST’21), 2021.

[158] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Benchmarking
high bandwidth memory on FPGAs,” in Proceedings of the 2020
IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM’20), 2020.

[159] Z. Wang, L. Luo, Q. Ning, C. Zeng, W. Li, X. Wan, P. Xie, T. Feng,
K. Cheng, X. Geng, T. Wang, W. Ling, K. Huo, P. An, K. Ji,
S. Zhang, B. Xu, R. Feng, T. Ding, K. Chen, and C. Guo, “SRNIC:
A scalable architecture for RDMA NICs,” in Proceedings of the 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’23), 2023.

[160] X. Wei, Z. Dong, R. Chen, and H. Chen, “Deconstructing RDMA-
enabled distributed transactions: Hybrid is better!” in Proceedings
of the 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’18), 2018.

[161] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory trans-
action processing using RDMA and HTM,” in Proceedings of the 25th
ACM Symposium on Operating Systems Principles (SOSP’15), 2015.

[162] X. Wei, X. Xie, R. Chen, H. Chen, and B. Zang, “Characterizing and op-
timizing remote persistent memory with RDMA and NVM,” in Proceed-
ings of the 2021 USENIX Annual Technical Conference (ATC’21), 2021.

[163] WikiChip, “Skylake (server – microarchitectures – intel,”
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server).

[164] Xilinx, “Alveo U280 data center accelerator card,”
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html.

[165] Xilinx, “Xilinx Virtex-7 FPGA VC709 connectivity kit,”
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html.

[166] J. Xue, M. U. Chaudhry, B. Vamanan, T. N. Vijaykumar, and
M. Thottethodi, “Dart: Divide and specialize for fast response
to congestion in RDMA-based datacenter networks,” IEEE/ACM
Transactions on Networking, vol. 28, no. 1, 2020.

[167] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in Proceedings of the 18th USENIX Conference on File and Storage
Technologies (FAST’20), 2020.

[168] C. Ye, Y. Xu, X. Shen, X. Liao, H. Jin, and Y. Solihin, “Hardware-based
address-centric acceleration of key-value store,” in Proceedings of the
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA’21), 2021.

[169] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and X. Jin, “NetLock:
Fast, centralized lock management using programmable switches,” in
Proceedings of the 2020 ACM SIGCOMM Conference (SIGCOMM’20),

2020.
[170] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and

N. S. Kim, “Don’t forget the I/O when allocating your LLC,” in
Proceedings of the 48th IEEE/ACM International Symposium on
Computer Architecture (ISCA’21), 2021.

[171] Y. Yuan, Y. Wang, R. Wang, R. B. R. Chowhury, C. Tai, and N. S.
Kim, “QEI: Query acceleration can be generic and efficient in the
cloud,” in Proceedings of the 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA’21), 2021.

[172] C. Zeng, L. Luo, Q. Ning, Y. Han, Y. Jiang, D. Tang, Z. Wang, K. Chen,
and C. Guo, “FAERY: An FPGA-accelerated embedding-based retrieval
system,” in Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’22), 2022.

[173] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding, X. Geng, T. Feng, F. Ning, K. Chen, and C. Guo, “Tiara:
A scalable and efficient hardware acceleration architecture for stateful
layer-4 load balancing,” in Proceedings of the 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’22), 2022.

[174] Y. Zha and J. Li, “Hetero-ViTAL: A virtualization stack for
heterogeneous FPGA clusters,” in Proceedings of the 48th IEEE/ACM
International Symposium on Computer Architecture (ISCA’21), 2021.

[175] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li,
“Distributed hierarchical GPU parameter server for massive scale
deep learning ads systems,” in Proceedings of the 3rd Conference on
Machine Learning ans Systems (MLSys’20), 2020.

[176] W. Zhao, J. Zhang, D. Xie, Y. Qian, R. Jia, and P. Li, “AIBox: CTR
prediction model training on a single node,” in Proceedings of the
28th ACM International Conference on Information and Knowledge
Management (CIKM’19), 2019.

[177] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen,
“Scalable, high performance Ethernet forwarding with CuckooSwitch,”
in Proceedings of the 9th ACM Conference on Emerging Networking
Experiments and Technologies (CoNEXT’13), 2013.

[178] S. Zhou and S. Mu, “Fault-tolerant replication with pull-based consensus
in MongoDB,” in Proceedings of the 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’21), 2021.

[179] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica, and
X. Jin, “Harmonia: Near-linear scalability for replicated storage with
in-network conflict detection,” in Proceedings of the 2019 International
Conference on Very Large Data Bases (VLDB’19), 2019.

[180] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control
for large-scale RDMA deployments,” in Proceedings of the 2015 ACM
SIGCOMM Conference (SIGCOMM’15), 2015.

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html

	Introduction
	Background and Motivation
	RDMA Primer
	Dilemma of Using Smart NIC
	Cache-coherent Interconnects and Accelerators

	Rambda System Architecture
	Inter- and Intra-machine Communication
	Coherence-assisted Accelerator Notification
	Rambda cc-accelerator Architecture
	Optimizing Device-host Data Transfer: Adaptive DDIO
	Rambda Programming Model
	Rambda Scalability

	Rambda Use Cases
	In-Memory Key-Value Store
	Distributed Transaction with NVM-based Chain Replication
	DLRM Inference

	Implementation and Methodology
	Evaluation
	Microbenchmark
	In-Memory Key-Value Store
	Distributed Transaction with NVM-based Chain Replication
	DLRM Inference

	Related Work
	Conclusion

