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Many applications handle sensitive data

financial, medical, insurance, military...
credit cards, medical records, corporate IP...

...but run on commodity operating systems

Complexity leads to poor assurance!

Motivation
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Reality:  
OS has many trusted parts:
   - kernel
   - device drivers
   - system daemons
   - anything running as root
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Defense in Depth Approach

Continue to use existing OS components, 
without fully trusting them

Add security layer to protect sensitive data 
even if OS is compromised

Desired security property:
   apps always behave normally 
   even if the OS behaves maliciously

(or fail-stop)



Problem: OS solely responsible for
CPU / memory resource management

➡ can access application memory & 
control application execution

Solution: isolated execution environment

➡ give app memory that OS can’t access
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Is CPU & memory 
isolation enough to 
run apps securely on 
an untrusted OS?

No!

Apps still explicitly rely on OS services,
so semantic-level attacks are possible.
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Background: Isolation Architectures

Legacy OS
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Legacy OS

Crypto
processor / VMM

Isolation can be
enforced via:

• microkernel 
processes
(e.g. Nizza / L4)

• separate VMs
(e.g. Proxos, 
NGSCB)

• encrypted 
application state
(e.g. XOM, 
Overshadow)



Isolation Properties

• secrecy: resources can’t be read by the OS

• integrity: resources can’t be modified
(without being detected)

• secure control transfer: OS can’t affect
control flow, except via syscalls/signals

No defense against semantic attacks!



Malicious OS Example

acquire_lock(l);
isEncrypted = true;
encrypt(data);
release_lock(l);

acquire_lock(l);
if (isEncrypted) {
  sendToNet(data);
}
release_lock(l);

Thread 1 Thread 2

OS grants lock to both threads,
introducing a new race condition!



More OS Misbehavior
A malicious OS could:

• read or modify file contents

• even if encrypted, swap two files

• snoop on keyboard/display I/O

• change system clock (break time-based auth)

• control /dev/random (break crypto)

(more examples & solutions in paper)



Towards Application Security

Ensure that system call results are valid
   (safety properties only; no availability)

Three approaches:

• verify correctness of system call results 

• emulate system call in trusted layer

• disallow system call / “use at own risk”



Verifying Mutexes

Create “lock-held?” flag in shared memory

• update after lock acquired & before released

• when acquiring lock, check if already held
by another thread

Isn’t this just re-implementing locking?
No — OS still handles scheduling, fairness, etc.



Verifying the File System
Similar to other FSes with untrusted storage
(e.g. VPFS, TDB, Sirius)

Approach:

• encrypt and hash file contents

• store file hashes, metadata in a hash tree

• need to protect directory structure too!



Emulating System Calls 

• Clock/randomness: implement in VMM;
transform system calls to hypercalls

• IPC: use trusted layer to send message content;
use OS signals for message notification



Conclusion

Isolation is only the first step to protecting 
applications from a malicious OS

Need to carefully consider implications of 
malicious behavior by “untrusted” components

Verifying correct behavior often simpler
than implementing it, so allows smaller TCB


