
Towards Application Security on
Untrusted Operating Systems

Dan R. K. Ports
MIT CSAIL & VMware

Tal Garfinkel
VMware

Many applications handle sensitive data

financial, medical, insurance, military...
credit cards, medical records, corporate IP...

...but run on commodity operating systems

Complexity leads to poor assurance!

Motivation

Large TCB Sizes

Hardware

OS

App AppApp
Other
Apps

Theory:
few small trusted parts;
can be assumed correct

Large TCB Sizes

Hardware

OS

App AppApp
Other
Apps

Theory:
few small trusted parts;
can be assumed correct

Reality:
OS has many trusted parts:
 - kernel
 - device drivers
 - system daemons
 - anything running as root

This is a problem.

This is a problem.
(and it’s not likely to solve itself)

Defense in Depth Approach

Defense in Depth Approach

Continue to use existing OS components,
without fully trusting them

Add security layer to protect sensitive data
even if OS is compromised

Defense in Depth Approach

Continue to use existing OS components,
without fully trusting them

Add security layer to protect sensitive data
even if OS is compromised

Desired security property:
 apps always behave normally
 even if the OS behaves maliciously

Defense in Depth Approach

Continue to use existing OS components,
without fully trusting them

Add security layer to protect sensitive data
even if OS is compromised

Desired security property:
 apps always behave normally
 even if the OS behaves maliciously

(or fail-stop)

Problem: OS solely responsible for
CPU / memory resource management

➡ can access application memory &
control application execution

Solution: isolated execution environment

➡ give app memory that OS can’t access

Is CPU & memory
isolation enough to
run apps securely on
an untrusted OS?

Is CPU & memory
isolation enough to
run apps securely on
an untrusted OS?

No!

Apps still explicitly rely on OS services,
so semantic-level attacks are possible.

Background: Isolation Architectures

Legacy OS

App AppApp
Other
Apps

Background: Isolation Architectures

Legacy OS
App

AppApp
Other
Apps

Microkernel

Trusted Services

Legacy OS

Isolation can be
enforced via:

• microkernel
processes
(e.g. Nizza / L4)

Background: Isolation Architectures

Legacy OS

AppAppApp
Other
Apps

Legacy OS Private
OS

VMM

Isolation can be
enforced via:

• microkernel
processes
(e.g. Nizza / L4)

• separate VMs
(e.g. Proxos,
NGSCB)

Background: Isolation Architectures

Legacy OS

App AppApp
Other
Apps

Legacy OS

Crypto
processor / VMM

Isolation can be
enforced via:

• microkernel
processes
(e.g. Nizza / L4)

• separate VMs
(e.g. Proxos,
NGSCB)

• encrypted
application state
(e.g. XOM,
Overshadow)

Isolation Properties

• secrecy: resources can’t be read by the OS

• integrity: resources can’t be modified
(without being detected)

• secure control transfer: OS can’t affect
control flow, except via syscalls/signals

No defense against semantic attacks!

Malicious OS Example

acquire_lock(l);
isEncrypted = true;
encrypt(data);
release_lock(l);

acquire_lock(l);
if (isEncrypted) {
 sendToNet(data);
}
release_lock(l);

Thread 1 Thread 2

OS grants lock to both threads,
introducing a new race condition!

More OS Misbehavior
A malicious OS could:

• read or modify file contents

• even if encrypted, swap two files

• snoop on keyboard/display I/O

• change system clock (break time-based auth)

• control /dev/random (break crypto)

(more examples & solutions in paper)

Towards Application Security

Ensure that system call results are valid
 (safety properties only; no availability)

Three approaches:

• verify correctness of system call results

• emulate system call in trusted layer

• disallow system call / “use at own risk”

Verifying Mutexes

Create “lock-held?” flag in shared memory

• update after lock acquired & before released

• when acquiring lock, check if already held
by another thread

Isn’t this just re-implementing locking?
No — OS still handles scheduling, fairness, etc.

Verifying the File System
Similar to other FSes with untrusted storage
(e.g. VPFS, TDB, Sirius)

Approach:

• encrypt and hash file contents

• store file hashes, metadata in a hash tree

• need to protect directory structure too!

Emulating System Calls

• Clock/randomness: implement in VMM;
transform system calls to hypercalls

• IPC: use trusted layer to send message content;
use OS signals for message notification

Conclusion

Isolation is only the first step to protecting
applications from a malicious OS

Need to carefully consider implications of
malicious behavior by “untrusted” components

Verifying correct behavior often simpler
than implementing it, so allows smaller TCB

