
Meerkat: Multicore-Scalable Replicated Transactions
Following the Zero-Coordination Principle
Adriana Szekeres

University of Washington

aaasz@cs.washington.edu

Michael Whittaker

UC Berkeley

mjwhittaker@berkeley.edu

Jialin Li

University of Washington

lijl@cs.washington.edu

Naveen Kr. Sharma

University of Washington

naveenks@cs.washington.edu

Arvind Krishnamurthy

University of Washington

arvind@cs.washington.edu

Dan R. K. Ports

Microsoft Research

dan@drkp.net

Irene Zhang

Microsoft Research

irene.zhang@microsoft.com

Abstract
Traditionally, the high cost of network communication between
servers has hidden the impact of cross-core coordination in
replicated systems. However, new technologies, like kernel-
bypass networking and faster network links, have exposed
hidden bottlenecks in distributed systems.
This paper explores how to build multicore-scalable, repli-

cated storage systems. We introduce a new guideline for their
design, called the Zero-Coordination Principle. We use this prin-
ciple to design a new multicore-scalable, in-memory, replicated,
key-value store, called Meerkat.
Unlike existing systems, Meerkat eliminates all cross-core

and cross-replica coordination, both of which pose a scalabil-
ity bottleneck. Our experiments found that Meerkat is able to
scale up to 80 hyper-threads and execute 8.3 million transac-
tions per second. Meerkat represents an improvement of 12× on
state-of-the-art, fault-tolerant, in-memory, transactional stor-
age systems built using leader-based replication and a shared
transaction log.

1 Introduction
Replicated, in-memory, transactional storage systems have

emerged as an important piece of infrastructure for data-

center applications because they combine fault-tolerance

and strong semantics with high throughput and low latency.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6882-7/20/04. . . $15.00

https://doi.org/10.1145/3342195.3387529

The performance demands placed on these systems are ex-

treme; e-commerce, social media, and cloud-scale storage

workloads, among others, can require tens of millions of

transactions per second [23, 43]. Meeting these demands

requires a system structured to eliminate coordination bot-

tlenecks both within each server and across the cluster.

For many years, distributed or replicated storage systems

have had the luxury of ignoring the cost of cross-core co-
ordination within a single node, as it has been masked by

the far higher cost of cross-replica coordination. Even in a

local-area network, the principal bottlenecks have come, by

a substantial margin, from network round trips and the cost

of processing packets [25, 51]. Indeed, the gap between com-

munication and computation cost has been so large that

some have proposed restricting execution to a single core to

simplify protocol design [9, 41]. But the era of slow networks

has come to an end. The past decade has brought into the

mainstream both faster network fabrics and kernel-bypass

network technologies that dramatically lower the cost of

packet processing. The result is that it is possible to build a

system that pushes the limits of cross-core coordination.

In fact, the effects are already visible on today’s widely

available hardware. Figure 1 compares the performance of

a simple key-value storage system implemented using the

traditional Linux UDP network stack on a 40 Gbit Ethernet

network and with eRPC [15], a recent kernel-bypass network

stack. In both cases, increasing the number of cores used

allows the system to handlemore PUT requests, but the eRPC

implementation has 8× higher throughput than the UDP

implementation. More importantly, when we introduce an

artificial scalability bottleneck in the application – a simple

atomic shared counter, incremented on every operation – the

effect is quite different. The application bottleneck has no

discernable effect (up to 20 cores) with the traditional UDP

implementation, as it is masked by bottlenecks in the Linux

network stack. With the optimized eRPC stack, however,

application-level scalability bottlenecks have a major effect.

1

https://doi.org/10.1145/3342195.3387529

2 4 6 8 10 12 14 16 18 20
Number of server threads

0

3

6

9

12

15

18

Th
ro

ug
hp

ut
 (m

illi
on

 P
UT

s/
se

c) eRPC
UDP
eRPC + atomic counter
UDP + atomic counter

Figure 1: Peak throughput comparison of PUT operations

for a simple key-value storage system implemented on both

a traditional Linux UDP stack and on a recent kernel-bypass

stack, eRPC. The 8× improvement in performance uncovers

cross-core scalability bottlenecks in the application – a sim-

ple shared atomic counter incremented on every PUT opera-

tion bottlenecks the system at 11 million operations/second.

That is, for the first time, the distributed system causes the

bottleneck at higher core counts.

Can replicated storage systems scale with increasing core

counts? A fruitful line of recent work [17, 18, 26, 46, 48, 50]

has made great strides in allowing single-node transaction
execution to take full advantage of multicore processors. Ex-

tending this to the distributed environment, however, runs

afoul of some fundamental challenges. Keeping replicated

systems consistent requires ensuring that each replica re-

flects the same order of execution. Multicore execution, how-

ever, is inherently non-deterministic, a problem for the state

machine approach [40]. Other replicated systems are com-

monly built with shared-memory data structures (e.g., logs)

that are themselves challenging to scale.

This paper takes a principled approach to multicore de-

sign that systematically eliminates bottlenecks in distributed

systems. We introduce the Zero-Coordination Principle (ZCP),
which states that a distributed system with no coordination

between replicas or cores will be multicore-scalable. ZCP

extends disjoint access parallelism, a classic architecture

property, to the distributed systems realm.

This paper demonstrates that this approach yields

multicore-scalable distributed systems using a case study on

in-memory replicated storage systems. We present Meerkat,
the first distributed system in this category that is multi-

core scalable. Meerkat uses a mix of new and old design

techniques to achieve a replicated transaction protocol with

no cross-core or cross-replica coordination. Our Meerkat

prototype must further ensure that its entire software stack

is coordination-free: it uses eRPC for kernel-bypass, x86

atomic instructions, and other optimizations to minimize

cross-replica and cross-core latency. Experiments with our

prototype demonstrate that Meerkat scales up to 80 hyper-

threads and executes 8.3 million YCSB-T [11] transaction-

s/second.

The paper makes the following contributions:

• A new Zero-Coordination Principle (ZCP) that guides
the design of multicore-scalable, replicated systems.

• The first multicore-scalable, replicated, in-memory,

transactional storage system, Meerkat, designed using

this principle.

• A performance comparison of Meerkat with existing

systems to evaluate the impact of violating ZCP on

multicore-scalability and performance.

2 The Zero Coordination Principle
Our goal is to build replicated systems that are bothmulticore-
scalable and replica-scalable. More precisely, if the system is

executing non-conflicting transactions – those whose read

and write sets are disjoint – the number of completed
transactions per core should not decrease even as the

total number of cores in the system increases. It should be

possible to scale up the system throughput by using nodes

with more cores or increase the system fault tolerance by

adding more replicas without a performance penalty. That

is, the only barriers to scalability should be ones that are

fundamental to the workload – those that arise from conflicts

between transactions.

Most systems do not achieve both multicore scalability

and replica scalability due to shared structures that require

coordination for non-conflicting transactions and hence be-

come points of contention. The Zero-Coordination Principle
states that scalable systems can be built by following two

rules:

Multicore scalability: DAP. The first half of ZCP is a

familiar one from previous work on designing multicore-

scalable applications, namely disjoint access parallelism
(DAP) [14]. The DAP principle states that a system will be

able to achieve ideal scalability on multicore processors if

non-conflicting transactions – ones that access disjoint sets

of memory locations – access disjoint memory regions. This

means that the implementation requires no cross-core coor-

dination. Later work extended the DAP principle to transac-

tional memory [2, 36].

DAP means that there should be no centralized points

of contention beyond the data items themselves, such as

transaction ID management or database lock managers. Re-

cent work has built single-node transaction processing sys-

tems that minimize or eliminate these central contention

points [17, 18, 26, 46, 48, 50]. Replicated systems tend to in-

volve further points of contention, such as shared logs or

other state tables, that must be eliminated for a replicated

system to support ZCP.

2

Replica scalability: coordination-free execution. Our
second performance goal, that performance should not de-

crease as the number of replicas increases, is addressed by

the second half of ZCP. Much as DAP required that non-

conflicting transactions not access the same memory regions,

ZCP imposes an additional requirement that non-conflicting

transactions do not require cross-replica coordination, i.e.,

replicas do not need to send messages to each other in order

to commit non-conflicting transactions.

For example, a traditional state machine replication proto-

col [20, 27, 34, 35] (or shared log), the basis for many trans-

action processing architectures [3, 5, 8, 39], does not meet

this requirement. It requires establishing a total order of op-

erations through a distributed protocol, e.g., by serializing

them through a leader replica, a form of cross-replica coor-

dination. This generally causes O
(
1

n

)
throughput scaling in

the number of replicas, though some replication and trans-

action processing protocols have been designed to avoid

this [25, 47, 52].

Although sufficient to meet our second performance goal,

this ZCP requirement is stricter than necessary and implies a

design where the task of replicating transactions is offloaded

to the clients. For example, one could potentially employ

chain replication [47] to build an equally scalable system but

at a higher latency cost (i.e., themessage delay is proportional

to the number of replicas). The stricter requirement leads to

better designs in cases where it is important to reduce the

number of message delays.

To summarize, ZCP requires that non-conflicting trans-

actions (1) do not access overlapping memory regions on a

single node, and (2) do not require cross-replica coordina-

tion. A system that satisfies both requirements will be both

multicore-scalable and replica-scalable.

ZCP is inspired by rules about when multicore scalabil-

ity is achievable on a single node. Beyond DAP itself, the

Scalable Commutativity Rule [6] takes the DAP principle a

step further by saying that an interface will have a multicore-

scalable implementation if its operations commute; it then

applies that rule to the design of operating system calls. ZCP

extends this approach to the replicated systems context.

3 Meerkat Approach
Enforcing ZCP is a tall order for any distributed system.

Meerkat uses the following design techniques to ensure zero

coordination.

Replicate transactions, not arbitrary operations. State
machine replication, used by popular replication protocols

(e.g., Paxos [20], VR [27, 34] and Raft [35]), is a poor match

for multicore scalability. Not only does it require determin-

ism, which is impossible to enforce on multicore replicas

without coordination, but it also requires a single ordering

of operations, typically using a shared log.

Meerkat takes a different approach and directly replicates

transactions. This design ensures that only conflicting trans-

actions require coordination, maintaining ZCP. While other

protocols use this approach to minimize coordination (e.g.,

Generalized Paxos [21], EPaxos [31]), they are more general

in the way that they detect dependencies between operations

and are not designed to minimize cross-core coordination.

Use timestamp-ordered optimistic concurrency control
for parallel concurrency control checks. Without a sin-

gle order of operations among replicas, Meerkat must

use a different approach to detect conflicts in transaction

ordering. Meerkat uses timestamp ordering and an opti-

mistic concurrency control mechanism to allow conflict

detection to happen in parallel. Timestamps directly or-

der transactions, and replicas and cores can independently

check for conflicts using only the timestamp without the

need for coordination mechanisms. This approach has been

used by multicore-scalable single-node transaction proto-

cols [26, 46, 50]; Meerkat extends it to work with a decen-

tralized replication protocol.

Use client-provided timestamps based on loosely syn-
chronized clocks. An obvious challenge for timestamp-

ordering is how to efficiently select a timestamp for each

transaction. Timestamp selection can be both a multicore

bottleneck (contention on the next-assigned timestamp) and

a source of coordination between replicas. Meerkat leverages

loosely synchronized clocks as a way to avoid this coordina-

tion: clients select and propose a timestamp for a transaction,

and replicas determine whether they are able to execute the

transaction at that timestamp without conflicts. Variants

of this approach have been used in a variety of recent sys-

tems [1, 8, 52]. Importantly, Meerkat does not require clock

synchronization for correctness (unlike Spanner [8], for ex-

ample) but only for performance.

Versioned backing storage. Versioned storage further elim-

inates the need to coordinate updates to the same key.

Timestamp-based concurrency control requires versioned

storage, so Meerkat can execute transactions on different

versions of the same key out of order: it can execute a read

operation at an earlier timestamp without conflicting with

a later write, or process certain writes under the Thomas

write rule [44].

4 Meerkat Overview
In this section, we describe the design of our new fault-

tolerant, multicore transactional storage system dubbed

Meerkat. Meerkat provides serializable transactions, replicat-

ing operations across multiple commodity servers for fault

tolerance. Meerkat follows the Zero-Coordination Principle

in its design, combining both a parallelism-friendly storage

implementation and a new transaction-oriented replication

protocol. Like prior single-node systems, it follows DAP to

3

provide multicore scalability by avoiding cross-core coordi-

nation for non-conflicting transactions. Unlike these systems,

it also avoids cross-replica coordination for these transac-

tions, providing replica scalability and achieving improved

performance and liveness compared to existing replicated

storage systems.

Before we detail the Meerkat transaction processing pro-

tocol in the next section, we give an overview of the system

model and key data structures.

4.1 System Model and Architecture
We assume a standard asynchronous model of a distributed

system. Formally, the system consists of n = 2f +1 multicore

replica servers and an unspecified number of client machines,

where f is the number of replica failures that the system

can tolerate. Replicas and clients communicate through an

asynchronous network that may arbitrarily delay, drop, or

re-order messages. Replicas can fail only by crashing and

can recover later.

Meerkat guarantees one-copy serializability for all trans-

actions: from each client’s perspective, the results are equiv-

alent to a serial execution of the transactions on a single

system. Like all replicated systems, Meerkat cannot ensure

liveness during arbitrary faults; it makes progress as long as

fewer than half of the replicas are crashed or recovering, and

as long as messages that are repeatedly resent are received

in some bounded (but unknown) time.

Each transaction is managed by a distinctMeerkat transac-
tion coordinator, which typically runs on the client machines

(usually application servers), and each replica runs a local

instance of the Meerkat multicore transactional database. A
Meerkat multicore transactional database instance is a three-

layered system consisting of a versioned storage layer, a

concurrency control layer, and a replication layer. Every

instance can process transactions independently of other in-

stances, perform recovery from various failure scenarios, and

synchronize with the other instances to ensure consistency.

4.2 Meerkat Data Structures

TID ReadSet WriteSet Status Timestamp

Core 1

455 <a,3>,<b,9> a,b COMMITTED 10

630 <a,10> a VALIDATED-OK 11

Core 2

121 <a,3>,<c,5> c VALIDATED-ABORT

845 <a,10> a ABORTED

Figure 2: An example trecord, partitioned on transaction id

among cores. Every Meerkat multicore database manages its

own trecord.

Each replica (i.e., Meerkat multicore transactional data-

base instance) runs an algorithm built around two main data

structures: the vstore and the trecord. These structures are
organized to preserve ZCP: all state is either partitioned per-

key (as in the vstore) or purely transaction-local and hence

only accessed from a single core (the trecord). The result

is that cross-core coordination is only necessary between

transactions that access the same data.

vstore. The vstore, shared among all cores at the replica,

implements the versioned storage layer. The vstore can be

implemented either as a concurrent hash table (to support

efficient gets and puts), or a concurrent tree (to support effi-

cient indexing and range queries). Our implementation uses

a hash table; other research has developed suitable multicore-

friendly concurrent tree structures [28].

The data stored in the vstore is augmented with a per-key

version number, or write timestamp,wts , which is the times-

tamp of the transaction that most recently wrote the value

of key, and a read timestamp, rts , which is the timestamp

of the transaction that most recently read the value of key.
(Since Meerkat serializes transactions in timestamp order, as

we show later,wts and rts essentially track the largest times-

tamps of transactions that wrote and, respectively, read the

value of key.) Additionally, each key maintains two lists of

all pending transactions that accessed it. readers[key] stores
the timestamps of all uncommitted transactions that read

key and were successfully validated. Likewise,writers[key]
stores the timestamps of all pending transactions that wrote

key. These are used in Meerkat’s validation protocol.

trecord. As shown in Fig. 2, the trecord maintains a set of

transaction records for recovery and synchronization. A

transaction record contains the following fields: a unique

transaction id (tid), the transaction’s read and write sets con-
structed during the execution phase (ReadSet and WriteSet),
a (proposed) commit timestamp (Timestamp) chosen after

the transaction is validated, and the status of the transaction

(Status). A transaction record also contains two additional

fields, View and AcceptView, that are used to recover from a

failure of the transaction’s coordinator; these are not illus-

trated in Fig. 2. We discuss their use in Sec. 5.3.

To avoid unnecessary synchronization and preserve DAP,

the trecord is horizontally partitioned among cores by trans-

action id. That is, each core operates on its own local trecord

partition that contains a subset of the transactions. Because

synchronous replication inherently requires a multi-round

algorithm, a replica is required to process multiple messages

for the same transaction, one in each round. We use a mecha-

nism based on the NIC’s forwarding capabilities to efficiently

route transactions to the correct core. Naively routing trans-

actions to cores can lead to spurious interrupts and unneces-

sary cross-core communication.

5 Meerkat Transaction Protocol
We begin with an overview of Meerkat’s transaction execu-

tion, then follow with the protocol in the absence of failures.

Finally, we describe failure handling and give a short proof.

4

5.1 Protocol Overview
Meerkat uses an optimistic protocol for executing and repli-

cating transactions. Like traditional optimistic concurrency

control protocols [19], Meerkat’s transaction protocol fol-

lows a three-phase execute-validate-write protocol. Meerkat

integrates its replica coordination protocol with the valida-

tion phase to ensure that transactions are executed consis-

tently across replicas. Importantly, this is the only phase that

requires coordination, and on its fast path (when there are no

conflicts between transactions), it is able to execute without

coordination between replicas.

Phase 1: Execute. During the execute phase, or read phase,

clients read versioned data from any replica. They buffer any

write operations locally; these are not installed until they

are ready to commit and have been validated.

Phase 2: Validate. Once the client completes executing the

transaction, the transaction enters the validation phase. This

is a combined OCC-style validation, ensuring that the trans-

action commits only if no conflicting transactions have oc-

curred, and a replica coordination protocol, ensuring that

each replica has consistent state. In this phase:

1. A transaction coordinator (located either on a client

or replica) selects a proposed timestamp for the trans-

action and sends a validate request to all replicas.

2. Each replica independently performs OCC validation,

checking whether they have committed any other

transactions that would conflict with the specified

timestamp, and returns either ok or abort.

a. If a supermajority (> 3

4
) of the replicas send match-

ing responses, the transaction commits or aborts

under the fast path; the coordinator sends a commit

or abort message.

b. Otherwise, an additional round of coordination (the

slow path) is needed to ensure consistency.

Phase 3: Write. Once a transaction has been committed,

replicas update their versioned storage with the transaction’s

writes.

5.2 Meerkat Transaction Processing
Meerkat’s transaction protocol includes subprotocols for

each of its three stages of execution. We first describe these

three subprotocols assuming the data is not partitioned

across multiple servers. We then discuss Meerkat support

for distributed transactions.

5.2.1 Execution Phase
The execution phase is orchestrated by a Meerkat transac-
tion coordinator. During the execution phase, the transaction

coordinator sends every read to an arbitrary replica. The

replica performs the read and responds with the read value

and version. These versioned values are buffered by the trans-

action coordinator into a ReadSet. Similarly, the transaction

R1

R2

R3

C1: T1

C2: T2

Validate
T1

Decide
Fast path

Decide
Slow path

Validate
T1

Validate
T1

Validate
T2

Validate
T2

Commit
T1

Commit
T1

Accept
T2

Accept
T2

Commit
T2

Commit
T2

Return
to app

Return
to appDecided

Figure 3: The commit protocol in normal operation mode.

coordinator buffers every write into aWriteSet. Writes are

not sent to any replica.

5.2.2 Validation Phase
The execution phase is followed by a commit protocol that

performs the validation phase, and, at the same time, repli-

cates the outcome of a transaction. The protocol combines

aspects of atomic commitment and consensus protocols. Like

atomic commitment protocols, such as two-phase commit,

the protocol performs decentralized transaction validation

(i.e., each replica is seen as a distinct participant able to

validate transactions independently). It uses consensus to

allow backup coordinators (in case of coordinator failures)

to eventually reach a unique decision to either commit or

abort every validated transaction.

A high-level view of the commit protocol and its commu-

nication pattern in the normal operation mode is illustrated

in Fig. 3. The two illustrated coordinators, C1 and C2, try to

commit transactions T1 and T2, respectively, at roughly the

same time. After the coordinators receive validation replies

from the replicas, they can either decide and commit the

transaction on the fast path, if enough replicas already agree

on the outcome of the transaction, or must take the slow

path (e.g., coordinator C2 did not receive enough validation

replies), on which they must get the replicas to agree on the

decided outcome.

Throughout this protocol, we assume that all messages

concerning a particular transaction are always processed

by the same core on any replica. This core affinity allows

the transaction state to be partitioned across different cores

in the trecord, preventing spurious synchronization across

different cores. In practice, the way we achieve this is to have

the coordinator select a coreid for the replicas to use, and

select a UDP port for communication based on the coreid to

ensure that Receive-Side Scaling NICs deliver messages to

the same core.

The commit protocol proceeds as follows:

1. The coordinator first selects a core, coreid , to process

the transaction, a proposed timestamp ts for the trans-
action, and a unique transaction id tid . The proposed

timestamp ts indicates the proposed serialization point

5

Algorithm 1Meerkat validation checks

1: procedure validate(txn, ts)
2: ▷ Validate the read set
3: for r ∈ txn .r eadSet do
4: lock(r .key)
5: e ← vstore[r .key]
6: if e .wts > r .wts or ts > MIN (e .writers) then
7: unlock(r .key)
8: go to abort
9: end if
10: e .r eaders .add (ts)
11: unlock(r .key)
12: end for

13: ▷ Validate the write set
14: for w ∈ writeSet do
15: lock(w .key)
16: e ← vstore[w .key]
17: if ts < e .r ts or ts < MAX (e .r eaders) then
18: unlock(r .key)
19: go to abort
20: end if
21: e .writers .add (ts)
22: unlock(w .key)
23: end for

24: return VALIDATED-OK

25: abort:
26: cleanup_readers_writers(txn)
27: return VALIDATED-ABORT
28: end procedure

of the transaction. To avoid the need for coordination

to select the next available timestamp, the coordinator

instead proposes a timestamp using its local clock: ts is
a tuple of the client’s local time and the client’s unique

id. tid is a tuple of a monotonically increasing sequence

number local to the client and the client’s unique id. By

including the client’s unique id, we ensure that both ts
and tid are globally unique.

The transaction coordinator then sends

⟨validate, txn, ts⟩ to all the replicas,
1

where txn
contains the tid as well as the read and write sets of the

transaction.

2. Each replica creates a new entry in its core-local trecord
partition and validates the transaction using the OCC

checks illustrated in Alg. 1.

The OCC checks begin by validating the transaction’s

reads. The condition e .wts > r .wts checks that the

read has read the latest committed version. The con-

dition ts > MIN (e .writers) checks that even if all pend-

ing transactions were to commit, the read would still

1
Throughout the protocol, any messages that receive no reply are resent

after a timeout. For simplicity, we do not describe this process for each

message.

have read the latest committed version as of ts . If ei-
ther of these conditions does not hold, the transaction is

aborted. Otherwise, the transaction’s timestamp is added

to readers .
The replica core then validates the transaction’s writes.

The conditions ts < e .rts and ts < MAX (e .readers)
check that a write will not interpose itself between a

pending read or committed read and the version read

by that read. Again, if either condition does not hold,

the transaction is aborted. Otherwise, the transaction’s

timestamp is added towriters .
We designed the parallel OCC checks to have small

atomic regions at the cost of precision (i.e., certain valid

serializable histories may be rejected). Further optimiza-

tions may be possible. For example, in certain abort cases

it may be possible to assign a different commit timestamp

and still commit the transaction, as in TAPIR [52]. We

have not yet explored these.

Ultimately, the replica core replies to the coordina-

tor with ⟨validate-reply, tid, status⟩ where status is

either VALIDATED-OK or VALIDATED-ABORT. If aborted,
any changes to the readers and writers set are backed
out.

3. If the coordinator receives a supermajority consist-

ing of f + ⌈
f
2
⌉ + 1 validate-replys with matching

status (this is the fast path condition), it notifies

the client that the transaction is complete. If status
is VALIDATED-OK, then the transaction is committed,

and if status is VALIDATED-ABORT, then the transac-

tion is aborted. The coordinator then asynchronously

sends ⟨commit, tid, status⟩ to all replicas. Note that this

commit message can be piggy-backed on the client’s

next message.

4. If the fast path condition is not met, the coordinator

takes the slow path. It must receive validate-replys

from a majority (f + 1) replicas, resending the validate

message if necessary. The coordinator then sends a

⟨accept, tid, status⟩ request to replicas, where, if f +1 or
more validate-replys have status = VALIDATED − OK,
the status argument is ACCEPT − COMMIT (i.e., the coordi-

nator proposes to commit the transaction), else the status
argument is ACCEPT − ABORT.
The accept request has the same role as the phase

2a message in Paxos – to ensure that a single decision

is chosen, even when there are multiple proposers. As

described so far, there is only one proposer, namely the

transaction coordinator; however, the coordinator recov-

ery protocol (Section 5.3.2) introduces backup coordina-
tors and the replica recovery protocol (Section 5.3.1) in-

troduces recovery coordinators that also act as proposers.

5. On receiving accept, the replica updates the status of

the transaction to status and replies to the coordinator

with ⟨accept-reply, tid⟩.

6

6. Once the coordinator receives a majority (f +
1) of accept-replys, the transaction is completed.

It notifies the client, and asynchronously sends

⟨commit, tid, status⟩ to all replicas. As before, this

commit message can also be piggy-backed on the client’s

next message.

To keep the description of the commit protocol simple, we

defer some details, mostly involving concurrent proposals,

which do not occur in the failure-free case, to the failure

handling section (Section 5.3).

5.2.3 Write Phase
On receiving a ⟨commit, tid, status⟩ message, the replica

marks the transaction as committed by setting its status in

the trecord entry to COMMITTED if status is VALIDATED-OK,
or ABORTED if status is VALIDATED-ABORT. It then performs

OCC’s write phase: if status is VALIDATED-OK, the replica
updates the data items to their new values, and sets the

version of each item to the commit timestamp. Regardless

of whether the transaction commits or aborts, the replica

simply cleans up readers andwriters for tid .

5.2.4 Distributed Transactions
The protocol we described so far can easily be extended to

support distributed transactions (when data is partitioned

across servers) since it already includes aspects of atomic

commitment protocols (i.e., decentralized validation of trans-

actions). The transaction coordinator would just need to

perform, in parallel, the validation phase in all partitions

involved in the execution of the transaction.

5.3 Meerkat Failure Handling
Thus far, we have not considered replica or network failures,

and have assumed that transaction coordinators do not fail.

Of course, Meerkat must remain resilient to such failures.

Meerkat handles replica failure transparently, but for a

recovering replica to rejoin the system, Meerkat must run

an epoch change protocol (Section 5.3.1), where the replicas

pause execution of new transactions to agree on a consis-

tent state of pending operations. The epoch change protocol

also helps with checkpointing, allowing the replicas to bring

themselves up-to-date and safely trim the trecord. Failure of

a transaction coordinator is handled by a coordinator recov-
ery protocol (Section 5.3.2) that allows a backup coordinator

to step in, without affecting any other transaction. The com-

plete specification of these protocols is given in the extended

version of the paper [42]; due to space constraints, we pro-

vide a brief overview here.

5.3.1 Replica Failure and Recovery
Meerkat uses a leaderless quorum protocol, so it is inherently

resilient to failures of a minority of replicas. Provided that

there are at least f + 1 replicas still available to respond to

requests, the system continues to make progress. Depend-

ing on the number of replicas in the system, failures may

cause the number of available replicas to drop below the

f + ⌈
f
2
⌉+1 needed for a supermajority, forcing the slow path

on every transaction. Note, however, that this still compares

favorably to many commonly-used primary-backup proto-

cols, which must stop processing transactions entirely after

replica failures until the system is reconfigured.

Replica recovery. We assume that a failed replica rejoins

the system without its previous state. To recover correctly,

we must ensure not only that the recovering replica learns

the outcome of all committed transactions, but that the sys-

tem state remains consistent for any partially-completed

transactions the replica might have participated in a quorum

in prior to crashing [29].

Meerkat assures this using a epoch change protocol that
brings the system to a consistent state. The epoch change

protocol is inspired by Viewstamped Replication. It begins

by designating a recovery coordinator, which serves to poll

the replicas to determine the state of ongoing transactions.

Each replica maintains an epoch number; the epoch number

identifies the epoch’s single recovery coordinator (as the

(epoch mod n)th replica). The recovery coordinator takes

the role of a leader that is in charge of deciding the outcome

of all ongoing transactions. After recovery, all replicas will

have a consistent trecord, which will be used by the restarted

replica to recover.

The recovery coordinator first sends a ⟨epoch-change, e⟩
request to all replicas. Every replica increments its epoch

number to e , and does not validate any new transactions until

the epoch change completes. It responds to the coordinator

with its current trecord, aggregated across all cores. Upon

receiving at least a majority (f + 1) of replies, the recovery
coordinator creates a new trecord (preserving the per-core

partitioning), in which it adds transactions using the follow

rules:

• It first adds all committed or aborted transactions (i.e.,

those for which at least one reply returns a status of
COMMITTED or ABORTED).
• If any replica has accepted a decision for a transac-

tion from the coordinator (or a backup coordinator,

described in Section 5.3.2), it adopts the decision with

the latest view number for that transaction, and adds

it to the trecord with the corresponding status.

• All remaining transactions for which at least a ma-

jority (f + 1) of replies reported the same status
in their respective trecords (either VALIDATED-OK or

VALIDATED-ABORT) are added to the trecord (with

status as COMMITTED or ABORTED).
• All remaining transactions that might have committed

on the fast path, i.e., those where there are at least

⌈
f
2
⌉ + 1 VALIDATE-OK replies, are re-validated using

7

OCC checks similar to those in Alg. 1 and added with

the corresponding status.

• Any other transactions are added with status set to
ABORTED.

The leader then sends

⟨epoch-change-complete, e, trecord⟩ to all replicas,

including the recovering replica. They synchronize their

trecords with one in the message, and then resume normal

operation.

5.3.2 Coordinator Failure and Recovery
The failure of a Meerkat transaction coordinator presents

a more subtle problem. In addition to preventing a client

from learning the outcome of a transaction, a coordinator

failure can leave unfinished transactions on the replicas.

These unfinished transactions may degrade performance

by preventing other transactions from being successfully

validated.

Meerkat addresses this by using a consensus-based coor-

dinator recovery protocol. Meerkat’s coordinator strategy

follows the approach used in TAPIR [52, 53] and is an in-

stance of Bernstein’s cooperative termination protocol [4].

In this protocol, in addition to its normal coordinator, each

transaction also has a set of 2f + 1 backup coordinators. The
backup coordinators, which are only invoked on coordinator

failure, can be shared among all transactions; each replica

can run a backup coordinator process, or they can be de-

ployed on a separate cluster. In the event of a coordinator

failure, a replica can initiate a coordinator change to activate

a backup coordinator and complete (either commit or abort)

the transaction.

To ensure that transaction outcomes are consistent even

in the presence of backup coordinators, Meerkat uses a con-

sensus protocol. The consensus algorithm guarantees that

all (backup) coordinators eventually reach the same decision

– to either commit or abort the transaction – even if they

concurrently propose different transaction outcomes.

Like most consensus algorithms, the coordinator recovery

protocol uses views to uniquely identify proposals. Unusu-

ally, each view is specific to a given transaction (i.e., tid). For
each view, one coordinator acts as the proposer. Each trans-

action starts with view = 0, and in this view, the original

transaction coordinator is the unique proposer. The unique

proposer in view > 0 is the (view mod n)th replica.
To support this protocol, for each transaction, we include

two additional fields in the transaction’s trecord entry: (1)

the current view number, view , initially 0; and (2) if this

is the case, the view number in which a proposal was last

accepted, acceptView. Note that this is the same information

maintained by Paxos to solve one instance of consensus.

When a replica notices the potential failure of the coordi-

nator of the current view, is starts a view change procedure,

similar to Paxos’ prepare phase, where a new backup coordi-

nator is established (a majority of replicas agree to ignore

proposals from previous coordinators, i.e., containing lower

view numbers). After receiving a quorum of replies for the

coordinator change request, the new coordinator analyzes

the replies to determine a safe outcome for the transaction.

This means that it selects any outcome that, in order of pri-

ority, has (1) been completed (COMMITTED or ABORTED) at
any replica, (2) been proposed by a prior coordinator and

accepted by at least one replica, or (3) been VALIDATED-OK or
VALIDATED-ABORT by a majority of replicas. It then attempts

to complete the transaction with that outcome on the slow

path, using a procedure similar to Paxos’ accept phase.

5.4 Correctness
Meerkat guarantees serializability of transactions under all

circumstances. We give a brief correctness proof sketch here.

Correctness during normal operation. Consider first the
non-failure case. Although Meerkat does not guarantee that

every replica executes each transaction – no quorum-based

protocol can do so – nor even that any replica executes

every transaction, its correctness stems from the fact that

OCC checks can be performed pairwise [52]. Moreover,

every successfully committed transaction must have been

VALIDATED-OK on a majority (f +1) of replicas. For purposes
of contradiction, suppose that there are two conflicting trans-

actions that have both successfully committed. Quorum inter-

section means that there exists at least one replica that must

have VALIDATED-OK both of the two transactions. However,

because the two transactions conflict, whichever one arrived

later at the replica must have returned VALIDATED-ABORT
instead. Thus, no such pair of transactions can exist.

Correctness during replica failure. As noted above,

replica failure by itself requires no special handling; it is

replica recovery that poses challenges. The correctness prop-

erty for the epoch change protocol is twofold: (1) any client-

visible results from previous epochs, either commits or

aborts, are reflected as COMMITTED or ABORTED outcomes in

the trecord adopted by any replica at the start of the new

epoch, (2) no further transactions commit in the old epoch.

Property (2) is readily satisfied, as the new epoch only begins

once f + 1 replicas have acknowledged an epoch-change

message, and they subsequently process no new transactions

in the old epoch; thus, no further transactions can achieve a

quorum.

With respect to property (1), consider first a transaction

that commits or aborts on the slow path. In this case, f + 1
replicas must have processed the accept message from the

coordinator. At least one of these replicas will participate

in the epoch change, and so the procedure in Section 5.3.1

will add it to the trecord in the appropriate state. Now con-

sider a transaction that committed on the fast path. At least

f + ⌈
f
2
⌉ + 1 replica must have returned VALIDATED-OK in the

validate phase, and at least ⌈
f
2
⌉ + 1 must have participated in

8

the epoch change. This transaction too will be added to the

trecord, per the algorithm, unless a conflicting transaction has
already been committed; however, since the original transac-

tion previously committed successfully, no such transaction

can exist.

6 Evaluation
Our evaluation demonstrates the impact of ZCP onmulticore

scalability. We break down the cost of cross-core coordina-

tion and cross-replica coordination on two workloads with

both long and short transactions. We also measure the trade-

off between multicore scalability and performance under

high contention. Our experiments show the following:

1. Cross-core coordination has a significant impact on

multicore scalability regardless of transaction length.

Eliminating cross-core coordination improves through-

put by 5–7× for up to 80 server threads.

2. Cross-replica coordination depends on transaction

length. Eliminating cross-replica coordination can pro-

vide a performance improvement ranging from 3% to

almost 2× for a three-replica system.

3. ZCP comes at a trade-off in supporting extremely

high contention workloads. Using 64 server threads,

Meerkat provides better performance on low-to-

moderately skewed workloads (up to Zipf coefficients

past 0.8), but performance suffers on very highly

skewed workloads.

6.1 Prototype Implementation
In addition to our Meerkat prototype, we implemented three

other systems to evaluate the relative impact of the two

ZCP constraints. First, we implemented a classic, log-based,

primary-backup replicated system that requires both cross-

core and cross-replica coordination: the primary decides

transaction ordering using a shared atomic counter and

places each committed transaction into a shared log for repli-

cation. Replicas also share the log but read transactions and

apply updates in parallel (concurrent log replay). Since the

transactions are already ordered, there is no need for de-

terminism at the replicas; however, log replay still requires

cross-core coordination for access to the shared log. This

mechanism is similar to many primary-backup multi-core

databases, like KuaFu [13]. Unlike KuaFu, this variant does

not need more synchronization, like barriers, to deal with

read inconsistencies (i.e., reads from backups that might be

in an inconsistent state after applying updates out of order)

since it relies on OCC validation checks at the primary for

correctness. Therefore, we refer to this system as KuaFu++.

Next, we implement a leader-less replicated system, de-

signed to emulate TAPIR [52]. The replicas do not coordinate,

but each replica uses a shared, cross-core transaction record.

Cross-Core
Coordination

Cross-Replica
Coordination

KuaFu++ Yes Yes

TAPIR Yes No

Meerkat-PB No Yes

Meerkat No No

Table 1: An overview of our evaluation prototypes. To mea-

sure the impact of ZCP, we implemented systems with dif-

fering cross-core and cross-replica coordination.

Based on the TAPIR protocol, clients issue transaction times-

tamps, so replicas can perform concurrency control checks

and apply transaction updates in parallel.

Finally, we implement a primary-backup variant of

Meerkat that satisfies DAP, which we label Meerkat-PB. It

uses the same data structures and concurrency control mech-

anism as Meerkat; however, only the primary executes con-

currency control checks, i.e., all clients submit their trans-

actions with timestamps to the primary, and the primary

decides which conflicting transactions will commit. Since

transactions are timestamp-ordered and conflict-free, repli-

cas can commit transactions in any order. To eliminate shared

data structures, each backup core is matched to a primary

core and processes only its transactions. Meerkat-PB lets us

measure the impact of cross-replica coordination without

cross-core coordination.

We believe that these four systems are representative for

the class of distributed storage systems we target – fast

systems that assume low to medium contention. Other ap-

proaches are possible, such as deterministic [45] or spec-

ulative [16] approaches. However, both of these types of

approaches, unlike ours, require that transactions’ read and

write sets be known a priori. In general, they are most effec-

tive for high contention rates, rather than our target.

All of our prototype systems have three layers: (1) a trans-

port layer for message delivery, (2) a storage layer for storing

the data and scheduling the transactions, and (3) a replica-

tion layer for consistently replicating the data. All systems

share the transport layer – ensuring that all systems have

access to the same high-speed network library and avoiding

differences due to different approaches to serializing and

deserializing wire formats. Meerkat and Meerkat-PB also

share the storage layer. All replication layers use the same

unordered record abstraction. Meerkat and Meerkat-PB use

one record per core, while KuaFu++ and TAPIR share a sin-

gle record per replica. To synchronize accesses to the shared

record, these solutions use simple mutexes from the C++

standard library.

The shared transport layer is built on eRPC [15], a fast,

reliable RPC library that bypasses the kernel. All storage

9

layers provide the same semi-structured data model and

use hash tables to store the key-value pairs. They also all

implement interactive transactions, as opposed to stored

procedures. Each key-value entry has its own fine-grained

lock, and reader and writer lists for concurrency control

checks. We use the unordered_map container for various

data structures and pthread read-write locks to protect them
for concurrent access.

6.2 Experimental Setup
We use three replica servers in our experiments. Each server

has two 20-core Intel Xeon Gold 6138 processors with 2 hy-

perthreads per core, supporting up to 80 server threads. In

all experiments, we pin each server thread to a distinct log-

ical CPU (i.e., hyperthread). Each core has private L1 and

L2 caches (of 64 KB and 1024 KB, respectively) and shares

the L3 cache (of 28 MB) with the other cores on its proces-

sor. The total DRAM size of 96 GB is evenly split between

the two NUMA nodes. To eliminate uneven overheads (e.g.,

L3 contention, database loaded in one NUMA node), each

experimental result was generated by an even number of

threads, half of which were pinned on distinct cores of one

NUMA node and half of which were pinned on distinct cores

of the other NUMA node.

Each server machine has a Mellanox ConnectX-5 NIC,

connected using a 40 Gbps link to an Arista 7050QX-32S

switch. All machines run Ubuntu 18.04 with Linux kernel

version 4.15. To mitigate the effects of frequency scaling,

we set the scaling governors (power schemes for CPU) to

performance, which maintains the CPUs running at 2 GHz,

for all 80 logical CPUs (hyperthreads), and we always start all

80 server threads to keep all the cores at full utilization (each

server thread polls in a loop on a NIC queue) to prevent the

Intel Turbo Boost from unevenly boosting up the frequencies

of the cores.

We use the flow steering mechanism of the Mellanox NICs

to preserve DAP in the networking stack. Each server thread

uses its own send and receive queue to which clients can

steer packets based on a port number – the NIC will place

packets in the corresponding queue managed by a single

core, thus avoiding unnecessary cross-core synchronization.

We run closed loop clients on ten 12-core machines, each

a single NUMA node. Each client machine uses a Mellanox

ConnectX-4 NIC, connected using a 40 Gbps link to the same

switch as the server machines. The client clocks are syn-

chronized with the Precision Time Protocol (PTP). When

running the experiments, we used a 5-minute warm-up pe-

riod to warm-up the caches and the CPUs. Each data point

is the average of the results of 3 identical runs.

We use two benchmarks: (1) YCSB-T [11], a transactional

version of Yahoo’s popular YCSB [7] key-value benchmark

and (2) Retwis [52], illustrated in Table 2, a benchmark de-

signed to generate a Twitter-like transactional workload. We

Transaction Type # gets # puts workload %

Add User 1 3 5%

Follow/Unfollow 2 2 15%

Post Tweet 3 5 30%

Load Timeline rand(1,10) 0 50%

Table 2: Description of the Retwis workload.

use keys and values of size 64 bytes. To illustrate the im-

pact of contention on each system, we perform experiments

using a varying Zipf distribution ranging from 0 (uniform,

low contention) to 0.6 (medium contention) to >0.9 (highly

contended).

We pre-allocate memory for metadata, such as the transac-

tion records and locks, to avoid memory allocation overhead

during the measurements. Before each run, we load the en-

tire database into memory, with 1 million data items per core.

By increasing the number of keys, we keep the contention

level constant as we scale to increasing numbers of cores.

All systems use OCC-based concurrency control, which

allows any replica to serve GETs – the OCC concurrency

control checks will later establish if they can be ordered at

a serializable timestamp. We thus uniformly load balance

the clients across replicas and their cores for both GET and

COMMIT requests.

Our experiments are focused on measuring throughput –

more precisely, goodput, i.e., the number of transactions that

successfully commit per second. It should be noted, however,

that Meerkat does not sacrifice latency to achieve scalability.

Indeed, it achieves low latency because the validation checks

are cheap, with small atomic regions – comparable with the

ones used by other systems – and the protocol saves one

round trip compared to most state-of-the-art systems.

6.3 Impact of ZCP on YCSB-T Benchmark
Using the YCSB-T benchmark, we measure the impact of

cross-core and cross-replica coordination using our four

prototype systems. We use the transactional variant of the

YCSB workload F, where transactions consist of a single

read-modify-write operation. These transactions are rela-

tively short with an even mix of read and write operations.

Figure 4 shows the performance of each system. The

KuaFu++ system has both cross-core and cross-replica coor-

dination; as a result, it bottlenecks at 6 cores with 600,000

transactions per second. Eliminating cross-replica coordina-

tion only improves performance slightly: our TAPIR system

scales to 8 cores and 800,000 transactions per second. How-

ever, cross-core contention prevents it from scaling further,

because it still uses a shared record between server threads.

This highlights an important point: despite the significant

research that has gone into eliminating cross-replica coordi-

nation, cross-core coordination may pose a more significant

10

10 20 30 40 50 60 70 80
Number of server threads

0

2

4

6

8

Th
ro

ug
hp

ut
 (m

illi
on

 tx
ns

/s
ec

)

MEERKAT
MEERKAT-PB
TAPIR
KuaFu++

Figure 4: Peak throughputs comparison between Meerkat

and the three other systems for uniform key access distribu-

tion for YCSB-T transactions containing one read-modify-

write operation. While Meerkat is able to scale to 80 cores,

the other systems all bottleneck at fewer cores due to violat-

ing ZCP.

bottleneck for many deployments, particularly using modern

networks.

In contrast, eliminating cross-core coordination in our

Meerkat-PB system increases throughput by 7x compared

to KuaFu++. Despite the need for cross-replica coordination,

the fast network communication between replicas using our

eRPC transport lets Meerkat-PB scale to 64 server threads.

Finally, eliminating cross-replica and cross-core coordina-

tion in Meerkat improves throughput by 12x compared to

our baseline KuaFu++ system. Meerkat is able to continue

scaling to 80 threads and 8.3 million transactions per second,

with the elimination of cross-core and cross-replica coordina-

tion contribution in roughly equal parts to its performance

improvements.

6.4 Impact of ZCP on Retwis Benchmark
We perform the same experiment with the Retwis [22, 52]

benchmark. Compared to YCSB-T, Retwis offers longer, more

complex transactions, a more read-heavy workload and a

wider range of transaction types. Figure 5 shows the results

for all four systems.

Due to longer transactions, the total transaction through-

put is lower for all systems. As a result, violating ZCP has

less impact on the systems with more coordination, and even

the non-ZCP systems are able to scale to more cores. TAPIR

and KuaFu++ are both able to scale to 32 cores because there

is more work for the cores to do during the execution period

where there is less coordination. However, they still are not

able to process more than 600,000-700,000 transactions per

second.

Since cross-replica coordination only happens during

transaction commit, its impact on performance is reduced

with longer transactions. In particular, the majority of the

execution phase for this benchmark consists of read opera-

tions, which can be executed on any replica. TAPIR does not

improve much on KuaFu++ by eliminating cross-replica co-

ordination and Meerkat-PB scales almost as well as Meerkat.

As a result, with longer transactions, the effects of cross-core

coordination on multicore scalability increase while the ef-

fects of cross-replica coordination decrease. Meerkat still

scales the best, achieving 2.7 million transactions per second

on 80 server threads.

10 20 30 40 50 60 70 80
Number of server threads

0

0.5

1

1.5

2

2.5

Th
ro

ug
hp

ut
 (m

illi
on

 tx
ns

/s
ec

)

MEERKAT
MEERKAT-PB
TAPIR
KuaFu++

Figure 5: Peak throughputs comparison between Meerkat

and the three other systems for uniform key access distri-

bution for Retwis transactions. The comparison systems are

able to scale better with coordination due to Retwis’s longer

transactions and read-heavy workload. However, none of the

systems quite scale linearly to 80 cores except Meerkat; the

non-ZCP systems continue to be limited by their additional

coordination.

6.5 ZCP and Contention
In this section, we evaluate the trade-off between ZCP and

performance under high contention workloads. Meerkat uses

a highly optimistic concurrency control mechanism to avoid

cross-core and cross-replica coordination. Meerkat decentral-

izes OCC checks at all replicas, while Meerkat-PB centralizes

them at the primary. As a result, Meerkat is more likely to

abort transactions at higher contention rates because replicas

cannot agree. Thus, Meerkat trades-off performance under

high contention for better multicore scalability.

To show this trade-off, we vary the Zipf coefficient of both

the YCSB-T and Retwis benchmarks. We fix the number of

server threads at 64, where Meerkat-PB still scales on both

workloads and compare their performance across the range

of Zipf coefficients.

Figure 6 clearly shows the trade-off between the two sys-

tems. For YCSB-T, Meerkat provides 50% higher throughput

until the zipf coefficient reaches 0.87. After that, Meerkat’s

OCCmechanism causes the throughput to dropmore sharply

than Meerkat-PB, making Meerkat’s performance worse at

higher contention rates. For Retwis’s longer transactions,

Meerkat-PB is able to match the performance of Meerkat;

however, at higher Zipf coefficients, Meerkat-PB outper-

forms Meerkat.

11

0.0 0.2 0.4 0.6 0.8 1.0
Zipf coefficient

0

2

4

6

Th
ro

ug
hp

ut
 (m

illi
on

 tx
ns

/s
ec

)

MEERKAT
MEERKAT-PB

(a) YCSB-T transactions

0.0 0.2 0.4 0.6 0.8 1.0
Zipf coefficient

0

0.5

1

1.5

2

Th
ro

ug
hp

ut
 (m

illi
on

 tx
ns

/s
ec

)

MEERKAT
MEERKAT-PB

(b) RETWIS transactions

Figure 6: Peak throughputs comparison between Meerkat and Meerkat-PB for various zipf coefficients, 64 server threads for

(a) YCSB-T transactions containing one read-modify-write operation, and (b) long, read-heavy Retwis transactions. Meerkat

outperforms its primary-backup variant for low to medium contended workloads.

0.0 0.2 0.4 0.6 0.8 1.0
Zipf coefficient

0

20

40

60

Ab
or

t r
at

e
(%

)

MEERKAT
MEERKAT-PB

(a) YCSB-T transactions

0.0 0.2 0.4 0.6 0.8 1.0
Zipf coefficient

0

20

40

60

80

100

Ab
or

t r
at

e
(%

)

MEERKAT
MEERKAT-PB

(b) Retwis transactions

Figure 7: Abort rates at peak throughputs comparison between Meerkat and its primary-backup variant for various zipf

coefficients, 64 server threads, and 3 replicas for (a) short YCSB transactions containing 1 read-modify-write operation, and (b)

the complex, read-heavy Retwis workload. Meerkat has slightly higher abort rate as it needs to collect multiple favorable votes

to commit transactions.

Figure 7 shows the reason for the drop in performance. At

lower contention rates and with shorter (YCSB-T) transac-

tions, the lack of coordination gives Meerkat higher perfor-

mance while both systems have low abort rates. However,

as the abort rate climbs with more contention and longer

transactions (i.e., note that the abort rate climbs faster for

Retwis), the lack of coordination hurts Meerkat and causes

its throughput to drop faster. High contention workloads re-

quire more coordination to support efficiently, which makes

them fundamentally at odds with multicore scalability.

7 Related Work
There is significant previous work in transactional storage

systems, replication, and multicore scalability. While past

research has focused on one or two of these topics, there

exists little work on the combination of all three. As we

showed in Figure 1, new advances in datacenter networks

will make multicore scalability an increasing concern for

replicated, transactional storage, forcing researchers to delve

into all three topics.

Replicated, transactional storage. Fault-tolerance is cru-
cial for modern transactional storage systems, thus plenty

of research has been done to understand how various repli-

cation techniques work with various transactional storage

systems, but less attention has been paid to the multicore

aspect.

Due to its simplicity, the most popular replication tech-

nique for transactional storage systems is primary-backup,

where only the primary executes and validates transactions

and ships updates using a log. Many commercial databases

– MySQL [33], PostgreSQL [37], Microsoft SQL Server [30],

among others – also support parallel execution at the pri-

mary, but the backups consume the log serially, thus becom-

ing a bottleneck, as observed in KuaFu [13]. These primary-

backup solutions trivially violate ZCP’s cross-replica coor-

dination rule and do not achieve Meerkat’s performance/s-

calability goal. Both KuaFu and Scalable Replay [38] enable

12

more concurrency at replicas, but both solutions also violate

ZCP’s first rule – KuaFu still requires log synchronization

and Scalable Replay requires a global atomic counter.

State-machine replication, where transactions are first

ordered then executed in the same order on all replicas,

is another popular option, adopted by many previous sys-

tems [24, 45]. In general, these solutions violate both tenets

of ZCP, requiring both cross-replica and cross-core on the

shared operation log. Calvin [45] improves on state of the

art by using deterministic locking on the replicas for better

performance but still requires cross-replica coordination.

Chain replication [47] offers an alternative; while it still re-

quires cross-replica coordination, communications between

replicas does not increase with increasing numbers of repli-

cas. There has not been a multicore-scalable transactional

store deployed on chain replication, but we speculate that it

would provide better performance at higher contention than

Meerkat at the cost of higher overall latency per transaction.

Several transaction protocols are able to eliminate cross-

replica coordination, including the classic Thomas algo-

rithm [44] and recent systems like Janus [32]. However, these

systems still use a shared log, as they were generally not

designed to be multicore scalable, and so cannot avoid cross-

core coordination. It may be possible to redesign these sys-

tems to meet ZCP, which represents an interesting future

direction.

Multicore Scalability for Unreplicated, In-memory Stor-
age. Meerkat follows a long line of research on unrepli-

cated, multicore, in-memory storage systems. Silo [46], Tic-

Toc [50], Cicada [26], ERMIA [17], MOCC [48] all strive to

achieve better multicore scalability using a variety of designs.

These include both single-version optimistic concurrency

control [46, 50] and multi-version concurrency control de-

signs [17, 26]. Some use more sophisticated concurrency

control mechanisms to ensure serializability; for example,

ERMIA uses a Serial Safety Net to reuse a snapshot isolation

mechanism while guaranteeing serializability [17]. Others

use careful design to provide scalability properties beyond

DAP; for example, Silo not only avoids cross-core coordina-

tion for committing disjoint read-write transactions, but it

also eliminates cross-core synchronization for all read-only

transactions. Wu et al [49] provide a good overview of the

design choices involved in these in-memory concurrency

control protocols and their relative benefits.

While these systems perform extremely well, they cannot

be easily extended to a replicated environment. In particular,

the concurrency control protocol in each system cannot be

trivially extended to support coordination between replicas

to ensure consistency. Replication further requires data struc-

tures that may not be multicore scalable and are not easily

made to scale.

General Multicore Replication. Replication for general

multicore applications remains a difficult problem. With-

out insight into application operations, replicas must use

some form of determinism to ensure consistency. For ex-

ample, Paxos Made Transparent [10] captures all system

calls and uses deterministic multi-threading. Eve [16] takes

a more speculative approach, letting replicas execute in par-

allel and rolling back operations in case of inconsistencies.

Rex [12] executes a transaction first at a primary, and logs

all non-deterministic decisions the primary made during the

execution and replays them at the replicas. These heavy-

weight mechanisms require significant cross-core coordi-

nation, making it impossible to scale these systems as the

number of cores grows.

8 Conclusion
With the proliferation of kernel-bypass technologies and

faster datacenter networks, existing distributed system de-

signs will be able to scale to the large number of cores being

deployed in the datacenter. This paper presented a new guide-

line for the design of multicore-scalable distributed systems

– ZCP – and a newmulticore-scalable, replicated, in-memory,

transactional storage system.

As we showed in our experiments, cross-core and cross-

replica coordination will increasingly dominate and limit

the performance of existing systems. A state-of-the-art repli-

cated, in-memory storage system can only scale to 6-8 server

threads, while Meerkat is able to scale to 10× the number

of cores with a corresponding increase in throughput. We

hope that these results encourage researchers to focus more

on the design of multicore-scalable distributed systems in

the future.

Acknowledgments
We would like to thank the anonymous reviewers and our

shepherd, Marta Patiño, for their comments and feedback.

This work is supported in part by NSF (CNS-1714508 grant)

and Futurewei.

References
[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient Optimistic

Concurrency Control Using Loosely Synchronized Clocks. Proc. of
SIGMOD, 1995.

[2] H. Attiya, E. Hillel, and A. Milani. Inherent Limitations on Disjoint-

access Parallel Implementations of Transactional Memory. In Proc of
SPAA, 2009.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M.

Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing Scalable,

Highly Available Storage for Interactive Services. In Proc. of CIDR,
2011.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison Wesley, 1987.

[5] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li.

Paxos Replicated State Machines as the Basis of a High-Performance

Data Store. In Proc. of NSDI, 2011.

13

[6] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and

E. Kohler. The Scalable Commutativity Rule: Designing Scalable Soft-

ware for Multicore Processors. In Proc. of SOSP, 2013.
[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with YCSB. In Proc. of SOCC,
2010.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghe-

mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,

E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-

lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and

D. Woodford. Spanner: Google’s Globally-Distributed Database. In

Proc. of OSDI, 2012.
[9] J. Cowling and B. Liskov. Granola: Low-Overhead Distributed Trans-

action Coordination. In Proc. of USENIX ATC, 2012.
[10] H. Cui, R. Gu, C. Liu, T. Chen, and J. Yang. Paxos Made Transparent.

In Proc. of SOSP, 2015.
[11] A. Dey, A. Fekete, R. Nambiar, and U. Rohm. YCSB+T: Benchmarking

web-scale transactional databases. In Proc. of ICDEW, 2014.

[12] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang. Rex:

Replication at the Speed of Multi-core. In Proc. of EuroSys, 2014.
[13] C. Hong, D. Zhou, M. Yang, C. Kuo, L. Zhang, and L. Zhou. KuaFu:

Closing the Parallelism Gap in Database Replication. In Proc. of ICDE,
2013.

[14] A. Israeli and L. Rappoport. Disjoint-access-parallel Implementations

of Strong Shared Memory Primitives. In Proc. of PODC, 1994.
[15] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter RPCs can be

General and Fast. In Proc. of NSDI, 2019.
[16] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin.

All About Eve: Execute-verify Replication for Multi-core Servers. In

Proc. of OSDI, 2012.
[17] K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA: Fast Memory-

Optimized Database System for Heterogeneous Workloads. In Proc. of
SIGMOD, 2016.

[18] H. Kimura. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.

In Proc. of SIGMOD, 2015.
[19] H.-T. Kung and J. T. Robinson. On optimistic methods for concurrency

control. ACM Transactions on Database Systems, 1981.
[20] L. Lamport. Paxos made simple. ACM SIGACT News, 2001.
[21] L. Lamport. Generalized consensus and Paxos. Technical Report

2005-33, Microsoft Research, 2005.

[22] C. Leau. Spring Data Redis – Retwis-J, 2013. http://docs.spring.io/

spring-data/data-keyvalue/examples/retwisj/current/.

[23] F. Li. Cloud-native database systems at Alibaba: Opportunities and

challenges. In Proc. of VLDB, 2019.
[24] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-free consistent

transactions using in-network concurrency control. In Proc. of SOSP,
2017.

[25] J. Li, E. Michael, A. Szekeres, N. K. Sharma, and D. R. K. Ports. Just say

NO to Paxos overhead: Replacing consensus with network ordering.

In Proc. of OSDI, 2016.
[26] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada: Dependably Fast

Multi-Core In-Memory Transactions. In Proc. of SIGMOD, 2017.
[27] B. Liskov and J. Cowling. Viewstamped replication revisited, 2012.

[28] Y. Mao, E. Kohler, and R. Morris. Cache Craftiness for Fast Multicore

Key-value Storage. In Proc. of EuroSys, 2012.
[29] E. Michael, D. R. K. Ports, N. K. Sharma, and A. Szekeres. Recovering

Shared Objects Without Stable Storage. In Proc. of DISC, 2017.
[30] Microsoft SQLServer. https://www.microsoft.com/en-us/

sql-server/default.aspx.

[31] I. Moraru, D. G. Andersen, and M. Kaminsky. There is more consensus

in Egalitarian parliaments. In Proc. of SOSP, 2013.
[32] S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating Concurrency

Control and Consensus for Commits under Conflicts. In Proc. of OSDI,
2016.

[33] MySQL. https://www.mysql.com/.

[34] B. M. Oki and B. H. Liskov. Viewstamped replication: A new primary

copy method to support highly-available distributed systems. In Proc.
of PODC, 1988.

[35] D. Ongaro and J. Ousterhout. In search of an understandable consensus

algorithm. In Proc. of USENIX ATC, 2014.
[36] S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and F. Quaglia.

Disjoint-Access Parallelism: Impossibility, Possibility, and Cost of

Transactional Memory Implementations. In Proc. of PODC, 2015.
[37] PostgreSQL. http://www.postgresql.org/.

[38] D. Qin, A. Goel, and A. D. Brown. Scalable Replay-Based Replication

For Fast Databases. In Proc. of VLDB, 2017.
[39] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to Build a Scalable,

Consistent, and Highly Available Datastore. In Proc. of VLDB, 2011.
[40] F. B. Schneider. Implementing Fault-tolerant Services Using the State

Machine Approach: A Tutorial. ACM Comput. Surv., 1990.
[41] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,

and P. Helland. The end of an Architectural Era: (It’s Time for a

Complete Rewrite). In Proc. of VLDB, 2007.
[42] A. Szekeres, M. Whittaker, J. Li, N. K. Sharma, A. Krishnamurthy,

D. R. K. Ports, and I. Zhang. Meerkat: Multicore-scalable replicated

transactions following the zero-coordination principle (extended ver-

sion). Technical Report UW-CSE-19-11-02 v2, University of Washing-

ton CSE, Nov. 2019. Available at http://syslab.cs.washington.edu/

papers/meerkat-tr-v2.pdf .

[43] D. Tahara. Cross shard transactions at 10 million requests

per second. https://blogs.dropbox.com/tech/2018/11/

cross-shard-transactions-at-10-million-requests-per-second/,

Nov. 2018.

[44] R. H. Thomas. A majority consensus approach to concurrency control

for multiple copy databases. ACM Transactions on Database Systems,
4(2):180–209, June 1979.

[45] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.

Calvin: Fast Distributed Transactions for Partitioned Database Systems.

In Proc. of SIGMOD, 2012.
[46] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy Transac-

tions in Multicore In-memory Databases. In Proc. of SOSP, 2013.
[47] R. van Renesse and F. B. Schneider. Chain replication for supporting

high throughput and availability. In Proc. of OSDI, 2004.
[48] T. Wang and H. Kimura. Mostly-Optimistic Concurrency Control for

Highly Contended Dynamic Workloads on a Thousand Cores. In Proc.
of VLDB, 2016.

[49] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An empirical evaluation

of in-memory multi-version concurrency control. In Proc. of VLDB,
2017.

[50] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. TicToc: Time Traveling

Optimistic Concurrency Control. In Proc. of SIGMOD, 2016.
[51] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The End of a Myth:

Distributed Transactions Can Scale. In Proc. of VLDB, 2017.
[52] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurhty, and D. R. K.

Ports. Building consistent transactions with inconsistent replication.

In Proc. of SOSP, 10 2015.
[53] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.

Ports. Building consistent transactions with inconsistent replica-

tion (extended version). Technical Report 2014-12-01 v2, Univer-

sity of Washington CSE, Sept. 2015. Available at http://syslab.cs.

washington.edu/papers/tapir-tr-v2.pdf .

14

 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://www.microsoft.com/en-us/sql-server/default.aspx
https://www.microsoft.com/en-us/sql-server/default.aspx
https://www.mysql.com/
http://www.postgresql.org/
http://syslab.cs.washington.edu/papers/meerkat-tr-v2.pdf
http://syslab.cs.washington.edu/papers/meerkat-tr-v2.pdf
https://blogs.dropbox.com/tech/2018/11/cross-shard-transactions-at-10-million-requests-per-second/
https://blogs.dropbox.com/tech/2018/11/cross-shard-transactions-at-10-million-requests-per-second/
http://syslab.cs.washington.edu/papers/tapir-tr-v2.pdf
http://syslab.cs.washington.edu/papers/tapir-tr-v2.pdf

	Abstract
	1 Introduction
	2 The Zero Coordination Principle
	3 Meerkat Approach
	4 Meerkat Overview
	4.1 System Model and Architecture
	4.2 Meerkat Data Structures

	5 Meerkat Transaction Protocol
	5.1 Protocol Overview
	5.2 Meerkat Transaction Processing
	5.3 Meerkat Failure Handling
	5.4 Correctness

	6 Evaluation
	6.1 Prototype Implementation
	6.2 Experimental Setup
	6.3 Impact of ZCP on YCSB-T Benchmark
	6.4 Impact of ZCP on Retwis Benchmark
	6.5 ZCP and Contention

	7 Related Work
	8 Conclusion
	References

