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Abstract. Interactive services often have large-scale par-
allel implementations. To deliver fast responses, the me-
dian and tail latencies of a service’s components must be
low. In this paper, we explore the hardware, OS, and
application-level sources of poor tail latency in high
throughput servers executing on multi-core machines.

We first review the basic queuing theory that governs
service latency. Using fine-grained measurements of three
different servers (a null RPC service, Memcached, and
Nginx) on Linux, we then explore why these servers ex-
hibit significantly worse tail latencies than queuing mod-
els alone predict. The underlying causes include inter-
ference from background processes, request re-ordering
caused by poor scheduling or constrained concurrency
models, suboptimal interrupt routing, CPU power saving
mechanisms, and NUMA effects.

We systematically eliminate these factors and show that
Memcached can achieve a median latency of 11 µs and
a 99.9th percentile latency of 32 µs at 75% utilization.
In comparison, a naı̈ve deployment of Memcached has a
median latency of 33 µs and a 99.9th percentile latency of
14 ms. Finally, we demonstrate that a tradeoff often exists
between throughput and tail latency.

1 Introduction

Networked services’ response times vary substantially
across requests. Even for a seemingly simple service, a
small fraction of requests can exceed the median latency
by orders of magnitude. This tail latency presents a chal-
lenge for designers, particularly in the case of large-scale,
parallel, and interactive applications.

Tail latency is problematic for several reasons. Interac-
tive services can struggle to provide increasingly complex
functionality under the strict latency budgets required to
ensure responsiveness. As well, under high degrees of
parallelism, poor tail latency will impact most user re-
quests. For example, a Facebook web request may access
thousands of Memcached servers [12], and a Bing search

may access 10,000 index servers [9]. A user’s request
does not complete until the slowest of these sub-requests
has finished. As a result, the one-in-ten-thousand case is
the common case.

What causes some responses to take much longer than
normal? Sometimes the answer is application-specific,
but even applications specifically designed to have low
median latency can have a substantial latency tail. In
this paper, we show how hardware, operating system,
and application-level design and configuration choices
introduce latency variability. To do this, we study the
behavior of three simple Linux servers executing on a
multi-core computer: a null-RPC server, Memcached, and
the Nginx web server.

We begin with a review of the basic queuing theory that
governs the response latency distribution experienced by a
particular service and request workload. Variable request
inter-arrival times inherently cause tail latency, as bursts
of requests that temporarily exceed the server’s capacity
introduce queuing delays. Queuing models predict that
tail latency worsens with increased server utilization, but
that it improves as additional processors service a queue.

Next, we measure the latency distributions achieved
by our three Linux servers. Somewhat surprisingly, these
distributions are substantially worse than predicted by a
simple queuing model. Using fine-grained measurements
taken at various levels of the system and stages of request
processing, we systematically identify the major sources
of “excess” tail latency beyond what is caused by the
underlying workload bursts, including:

• interference from other processes, including back-
ground processes that run even on a system seemingly
dedicated to a single server;

• request re-ordering caused by scheduling policies that
are not designed with tail latency in mind;

• application-level design choices involving how trans-
port connections are bound to processes or threads;
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• multi-core issues such as how NIC interrupts and
server processes are mapped to cores;

• and, CPU power saving mechanisms.

Guided by our measurements, we introduce techniques
for eliminating the excess tail latency exhibited by our
servers. For example, with a default configuration of a
four-core computer with a 10 Gb/s NIC, Memcached
operating at 75% utilization has a median latency of 33
µs and a 99.9th percentile latency of 14 ms. With our
techniques, we were able to improve this to a median
latency of 11 µs and a 99.9th percentile latency of 32 µs,
an improvement of two orders of magnitude at the tail that
closely matches the queuing model’s “ideal” distribution.
Lastly, we observe that a tradeoff often exists between
throughput and tail latency.

2 Queuing Models and Predicted Latency

What is the best possible tail latency achievable by a
networked server? If we can understand the answer to this
question, we can use it as an “ideal” baseline distribution
to gauge how well a particular server implementation and
configuration performs.

One might hope that the best latency distribution is
uniform, in which every request has the same response
time. However, this is unattainable for realistic workloads:
queuing models show why there is a latency tail that is
inherent to the workload. This tail is caused by the queu-
ing delays that are introduced when a burst of requests
temporarily exceeds the system’s underlying request pro-
cessing capacity.

Using queuing models, we can remind ourselves of
four known facts about the latency characteristics of real
servers and workloads. First, even if we could build a
server that processes requests in a fixed, deterministic
time, there will still be a latency tail for workloads that
have variable request inter-arrival times. Second, the ideal
latency distribution depends on the average utilization at
which the server is driven. Systems that are run at high
utilization have larger latency tails.

Third, adding additional processors to a system can
reduce tail latency, even when the workload throughput is
scaled up to maintain the same overall server utilization.
Fourth, the choice of queuing discipline affects tail latency.
FIFO scheduling provides the lowest tail latency, whereas
other policies can achieve lower median latency at the
cost of worse tail behavior.

Model. We model a server as a single-queue system,
in which clients’ requests are independent and arrive ac-
cording to an arrival distribution. One or more workers
(processors, threads, or processes) at the server retrieve
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Figure 1: The latency tails exhibited by single-worker,
uniform-service-time server, for different request arrival
distributions.

and process requests from the queue according to a prede-
termined queuing discipline, such as FIFO. In Kendall’s
notation, this would be termed a A/S/c queue, where A
describes the arrival distribution, S is the service time
distribution, and c is the number of independent workers.
The average arrival rate (A) must be lower than the av-
erage service rate (S), otherwise queuing delays become
infinite.

2.1 Arrival distributions

Figure 1 shows the response latency of a single-worker
FIFO server with a uniform request processing time of
50 µs when operated at an average utilization of 70%.
The graph is a complementary cumulative distribution
function, and so the point (x,y) on the graph implies that
y is the fraction of requests that experience a latency of
at least x µs. This style of graph helps when visualizing
latency tails, as Y-axis labels correspond to the 0th, 90th,
99th, 99.9th (and so on) percentile latency.

Each line on the figure corresponds to a different
request inter-arrival time distribution. We have plot-
ted several analytically defined arrival processes and
the measured inter-arrival distribution of requests to
Wikipedia [14], each scaled up to have an average request
throughput corresponding to 70% server utilization.

Despite each request taking a deterministic amount of
time, the latency tail (i.e., 99th percentile or 99.9th per-
centile) is high, because of random arrival bursts. For
example, if two requests arrive within 50 µs of each other,
the second request must be delayed until the first com-
pletes and the server becomes available. For each distribu-
tion, there is some probability of requests coming together
in bursts sufficiently tight as to cause delay. The exception
is a uniform arrival distribution, which is unrealistic in
the real world.
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Figure 2: The effect of increased utilization on tail latency,
for a Poisson request inter-arrival time distribution.

2.2 Utilization

Next, we show how ideal latency distributions vary as we
increase the server utilization. Increasing utilization re-
duces the leeway to handle bursts, which means that com-
monly occurring small bursts will build up large queues
with long delays. Figure 2 shows this effect for a Pois-
son arrival process. Keeping the number of workers at 1,
we increased the average request arrival rate, raising the
server’s utilization from 50% to 95%. The 99th percentile
increases by 10x as we go from 50% utilization to 95%.
This suggests a simple (if expensive) way to improve tail
latency: running servers at low utilization.

2.3 Parallel servers feeding from one queue

Latency distributions also depend on degree of parallelism
at the server. The ideal distribution improves as we change
the number of workers (CPUs) at the server, even as we
scale up the average request throughput to keep the server
utilization constant. Figure 3 shows the effect of adding
more workers for Poisson arrivals. Starting with 1 worker
and a Poisson arrival process, we doubled the number
of workers at each step and also doubled the arrival rate,
keeping utilization fixed at 70%.

Increasing the number of workers leads to better tail
latency. With n workers, up to n requests can arrive within
the same 50 microsecond interval before any requests
are queued. For example, the 99th percentile drops by 4x
when running 8 workers instead of 1. However, an impor-
tant caveat is that this improvement depends on all parallel
workers pulling requests from a shared queue. If, instead,
each worker has a separate queue, the resulting latency
distribution would be the same as the single-worker case,
as we are just instantiating multiple independent copies
of a single-worker system. Throughput would improve,
but the latency distribution would not.
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Figure 3: Tail latency improves as we increase the number
of workers in a server, while scaling up the request arrival
rate to maintain 70% utilization.
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Figure 4: Latency distributions as we change the queuing
discipline.

2.4 Queuing discipline
The order in which requests are pulled from the queue
has a significant impact on both median and tail latency.
Figure 4 shows the latency distribution for 4 different
queuing disciplines, for a server with 4 workers at 80%
utilization and 50 µs of processing delay.

• FIFO: Requests are put in a single global FIFO
queue at the server and workers pull requests from
it. The earliest request is always processed next.

• LIFO: The opposite of FIFO; the most recently ar-
riving request is processed next.

• Random worker: When requests arrive, they are
assigned to a random worker. Each worker has its
own FIFO queue.

• Random request: All requests arriving at the server
are put in a single queue, and workers pull requests
from the queue in random order. Each queued re-
quest is equally likely to be processed next, regard-
less of its arrival time.

FIFO queuing has the best tail latency; indeed, it is
known to be optimal with respect to worst-case (i.e., tail)
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latency, as can be seen using a simple exchange argument.
In comparison, LIFO has worse tail latency than FIFO, but
better median latency (50 vs. 64 µs in our example). Both
random disciplines have worse tail latency than FIFO,
though “random request” has better median latency as
well, since some requests are able to jump the queue.

3 Measurement Method

In the previous section, we summarized known important
results about the “ideal” latency distributions of simple
queuing systems for different workloads. In the rest of
this paper, we measure the latency tails of real servers and
attempt to explain what factors lead them to diverge from
the best case predicted by queuing models. Our overall
approach is to identify a discrepancy, to analyze the sys-
tem to explain and mitigate it, and to iterate through this
process until we bring the measured latency distribution
close to the ideal predicted distribution.

3.1 Applications

We examine three applications in our study; a null RPC
server, Memcached, and Nginx. Each of these servers
is designed to provide low latency response and high
throughput. However, they have different concurrency
models (e.g., threads vs. events) and they use different
transport protocols (TCP vs. UDP). As we will see, these
choices do impact the servers’ measured latency tails.

3.1.1 Null RPC server

We begin with our simplest application: a null RPC server
that we implemented in C. The server accepts TCP con-
nections, reads 128 byte requests over each TCP connec-
tion, and echoes 128 byte responses back to the clients.
We chose a classic multi-threaded architecture that some-
what resembles Apache: the server has a main accept
thread that spawns new worker threads to handle each ar-
riving client connection. The worker threads enter a block-
ing loop, reading requests using read and immediately
writing a response back using write. Worker threads do
not access any shared data structures or locks, and they
do not use any other system calls.

For this server, request queuing and scheduling are
managed by the OS. When a request arrives on an estab-
lished TCP connection, the OS places the corresponding
worker thread on a ready queue, eventually scheduling it
on an available core. The order in which requests are pro-
cessed therefore depends on how TCP data flows through
the OS and the OS’s thread scheduling policy.

3.1.2 Memcached

Memcached is a fast, flexible and lightweight key-value
store, primarily used for accelerating dynamic web appli-
cations. Memcached is used in environments where low
tail latency is important. For example, Facebook’s appli-
cations may execute thousands of Memcached queries
for each user request [12]. Accordingly, Memcached is
specifically engineered to have predictable latency, stor-
ing all data in an in-memory hash table and using custom
memory management with O(1) operations.

Memcached supports both TCP and UDP connections.
We study its performance using a UDP workload, as this
is the configuration typically used in high-performance
environments. Memcached servers are often configured to
have a number of threads proportional to number of cores
in the system, to exploit parallelism. All worker threads
simultaneously wait for messages on the UDP socket,
retrieving messages from the kernel’s receive queue in
FIFO order. Processing a request generally requires a
lookup into the hash table, acquiring one or more locks,
and updating linked list pointers. As we show in our mea-
surements, this application level processing takes only
1-2 µs with very little variance.

In our experiments, we store 64-byte keys with 1024-
byte values in Memcached. As well, we generate a work-
load consisting of 90% reads and 10% writes.

3.1.3 Nginx

The Nginx web server is designed for high throughput and
to scale to many cores. Unlike Apache, which uses threads
or processes and blocking system calls to process requests,
Nginx has an event-driven architecture, dividing HTTP
processing into various stages and using non-blocking sys-
tem calls to perform asynchronous disk and network I/O.
To take advantage of multicore and multiprocessor sys-
tems, Nginx runs multiple worker threads (typically one
per core), and statically assigns each client to a specific
worker thread at connection establishment.

In our experiments, clients direct all HTTP requests to
the same static file. Because of this, all file reads hit in
the file system buffer cache, avoiding any latency vari-
ability introduced by storage device I/O. Clients issue
85-byte HTTP requests, and the server generates 849-
byte responses (including HTTP headers and payload).

Nginx worker threads check for completed I/O events
using the epoll system call. The Nginx worker then
iterates over the associated connections and performs the
necessary HTTP processing. Importantly, epoll returns
a list of file descriptors in the order they became ready,
unlike previous interfaces that returned an unordered list.
This allows each Nginx worker to process HTTP requests
in FIFO order.
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3.2 Deriving the ideal distribution

Given an application, a workload, and a system configura-
tion, how do we determine the ideal latency distribution?
We accomplish this by determining a reasonable estimate
for the amortized time the application takes to process
a single request, by measuring the actual request arrival
time series experienced by a server while engaged in an
open-loop workload with clients, and then by feeding this
time-series and estimated static request processing time
into a queuing model.

We estimate the amortized request processing time by
running the server on a single core at 100% utilization and
measuring the throughput achieved. Inverting the through-
put number gives an estimate of the amortized latency
of processing a single request. For example, in case of
Memcached, we measured peak throughput at 125,000 re-
quests per second per core. Hence, our amortized request
processing time is 8 µs per request.

In practice, request processing times will vary. For ex-
ample, batching effects can reduce the processing time of
some requests, cache misses can increase the processing
time of some requests, and contention for shared locks
can introduce delays under load. However, for the specific
servers that we are studying, the request processing logic
is simple enough that we have found per-request process-
ing variability to be negligible relative to burst-induced
queuing delays.

Once we obtain this amortized request processing time
(t), we simulate an M/D/c queue as described in Section 2.
In our simulation, we assume every request takes a deter-
ministic time of t µs. The input request distribution for
the simulator is the sequence of request arrival times mea-
sured during our experiment. This allows us to compare
a measured latency distribution of an actual server to the
latency distribution of an ideal server.

3.3 Testbed

We measure the performance of our three applications
on a testbed consisting of Dell PowerEdge R610 servers,
each with two Intel Xeon L5640 6 core (12 threads, 2.27
GHz) processors, running Ubuntu Linux 12.04 with ker-
nel version 3.2.0. Each machine has 24GB of DRAM
(1333 MHz) divided into two 12GB NUMA nodes. Each
machine has a Mellanox ConnectX-3 NIC that is con-
nected directly to a single Arista 7150S 24 port 10 Gbps
switch.

We use one of the servers to run the application un-
der test, and five machines to run clients to generate the
workload. The clients generate requests as an open-loop
Poisson process; we adjust the request rate to maintain
a target CPU utilization on the server. For TCP-based
workloads, we open all connections at the start of the

experiment, outside the measurement interval, so that con-
nection setup overheads do not affect our results.

3.3.1 Timestamping

To precisely understand and pinpoint the sources of la-
tency variation, we need a fine-grained timestamping
method to measure how much time a request spends in
different parts of the server OS and application. We start
timestamping when a request packet first arrives on the
host from the server’s NIC, and we end timestamping
immediately before the OS transfers the response packet
back to the NIC. We use the system clock with microsec-
ond precision as the global reference of time for times-
tamping, and we disable NTP to avoid measurement errors
arising from time updates.

To timestamp requests, we append an empty 30-byte
buffer to the original request packet. As the request makes
its way through various stages of server processing, we
write the system clock time into the buffer. To imple-
ment this, we modified the Linux kernel source, network
drivers, and application protocols to write timestamps
into the appended buffer at the right offset. This method
is attractive because it allows us to collect multiple times-
tamps with low overhead, and it avoids the need for the
server to log requests: the response packet itself contains
all the timestamps, so the clients can maintain the log.

For this study, we timestamp at each of the following
events:

T1: In the network driver, when the NIC has notified the
system that a packet is available.

T2: After TCP/UDP processing, but before the applica-
tion is scheduled.

T3: After the application thread has been scheduled onto
a core.

T4: After the application’s read system call returns, i.e.,
after the request data has been copied to user space.

T5: When the application makes a write system call to
send the response.

T6: In the network driver, when the response packet is
sent to the NIC.

We report T6-T1 as the latency of a given request. The
intermediate timestamps are diagnostic, used to identify
the source of tail latency. T1-T2 is the network stack pro-
cessing delay. T2-T3 is the queuing and wakeup delay.
T3-T4 is the packet copy and return to user-level delay.
T4-T5 is the user space application processing time. T5-T6
is the packet transmit delay.

This paper focuses on tail latency in network servers.
Our experiments measure only the NIC-to-NIC process-
ing delay on the server, and exclude any latency caused

5



10-5

10-4

10-3

10-2

10-1

100

101 102 103 104 105

C
C

D
F 

   
P[

X
 >

=
 x

]

Latency in micro-seconds

(a) Null RPC server (b) Memcached (c) Nginx

Ideal Server Standard linux Niceness -20 Realtime Priority Dedicated Core

10-5

10-4

10-3

10-2

10-1

100

101 102 103 104 105

Latency in micro-seconds

(a) Null RPC server (b) Memcached (c) Nginx

10-5

10-4

10-3

10-2

10-1

100

101 102 103 104 105

Latency in micro-seconds

(a) Null RPC server (b) Memcached (c) Nginx

Figure 5: The effect of background processes on tail latency. For this experiment, we disabled all but a single core on a
single CPU, and we loaded the server at 80-85% utilization.

by the network fabric or client. The network can also be
an important source of tail latency in datacenters, as has
been studied extensively by previous work [1, 15, 19], but
this is outside the scope of our study.

Our measurements begin once the network driver is no-
tified that a packet is available. It is possible that the NIC
itself is a source of tail latency, so a more accurate mea-
surement would use a timestamp taken in the NIC. Our
networking cards support hardware timestamping, mak-
ing such a measurement ostensibly possible. However,
enabling this feature imposes more than 15 µs process-
ing overhead for each packet, so we cannot use it in our
benchmarks without skewing the results. Instead, we have
verified that the arrival distribution of packets at the NIC
(using hardware timestamps) is not significantly different
than that measured in the driver.

4 Sources of Tail Latency

We now turn our attention to the measured latency behav-
ior of our three servers and the factors that affect it. We
first use the method previously described in Section 3.2
to derive the “ideal” latency distribution of each server.
Next, we measure their actual latency distributions in a de-
fault configuration on Linux, showing that each performs
significantly worse than its ideal.

We study these applications in increasingly complex
configurations, beginning with a single-core system and
later moving toward multi-core and multi-processor con-
figurations. In the process, we identify the causes of devi-
ation from the ideal latency distribution. By ameliorating
each cause, we show that our server can achieve a latency
tail that is close to ideal.

4.1 Background Processes

We start with the simplest configuration: a single CPU,
single core system running a single server at a time. For
this configuration, we disable all but one CPU core on our

server machine, and we also disable HyperThreading. For
each server application, we adjust the clients’ workload
to achieve a target server utilization of 80%.

In Figure 5, we plot the servers’ ideal latency distri-
butions and their actual measured latency distributions.
Although the ideal and measured median latencies are
similar (e.g., 29 µs for the measured null RPC server ver-
sus 21 µs for the ideal distribution), the measured 99th
percentile latencies are 10-1000x the ideal latencies.

With only a single core available on the machine, the
server application has to contend with other running back-
ground processes for the core. Although our test machine
is not running any other servers or compute-intensive
tasks, it still runs a standard complement of Linux dae-
mons (e.g., sshd, NetworkManager) and cluster manage-
ment software (e.g., Ganglia).

By default, all user level processes have the same prior-
ity. As a result, when the kernel schedules a background
process, our application has to wait for the core to become
available. The scheduler used by our Linux kernel assigns
processes time-slices on the order of milliseconds, which
explains why some requests in Figure 5 take more than
a millisecond. There is a tail amplification effect that in-
creases impact of these long delays: if the core is blocked
by a background task for a long period of time, this greatly
increases the latency of not just a single request but all
requests that arrive in that interval.

The natural approach to mitigating this problem is to as-
sign the server application a higher priority than the back-
ground tasks. However, Linux’s normal priority mecha-
nism (niceness) is not powerful enough to be effective for
reducing tail latency. Figure 5 shows the effect of increas-
ing the priority to its maximum normal value (niceness
-20). This causes the server process to be scheduled for
longer time-slices than other processes on the system,
providing a slight improvement in tail latency, but still
remaining far away from the ideal latency. The differ-
ence remains because the server cannot preempt other
processes. It must wait for them to finish their time-slice,

6



which is still much larger than an individual request’s
processing time.

Linux’s realtime scheduler allows us to raise the prior-
ity of our server application strictly higher than all other
processes. Making the server process a realtime process
allows it to preempt any normal-priority process. This
improves the tail latency dramatically, nearly eliminat-
ing the effects of background processes. For comparison,
Figure 5 also shows a “Dedicated Core” line, where we
move all other processes to a second CPU core, leaving
the first entirely dedicated to the server application. The
slight difference between the dedicated-core and realtime-
priority configurations can be attributed to increased con-
text switching overhead and occasional cases where an-
other running process is in a non-preemptable section of
kernel code.

The realtime scheduler has a second effect. In addition
to running processes at strictly higher priority, it also
schedules threads of the same priority in FIFO order,
which is not the case for normal-priority processes. We
break down the impact of this change in the following
section.

4.2 Non-FIFO Scheduling

As we established via theoretical analysis in Section 2, a
FIFO scheduling discipline has better tail latency (but po-
tentially higher median latency) than other policies. The
default Linux scheduler, CFS (Completely Fair Sched-
uler [3]) favors fairness over order, resulting in a non-
FIFO scheduling policy. This has a measurable effect on
some of our experiments.

The null RPC server is the only one of our applications
impacted by FIFO vs non-FIFO scheduling, because it is
the only multithreaded application. The null RPC server
relies on the kernel’s scheduler to determine which thread
to run next, and therefore which request to process first.
The CFS scheduler chooses which thread to run based
on how much CPU time each thread has received in the
past, rather than which one became runnable earliest, so
requests will not be processed in the order that they are
received. This scheduling policy does not affect the two
other applications, because they use event-driven archi-
tectures with only a single thread per core.

As a result, switching to the realtime scheduler has two
effects on the null RPC server. It reduces interference
from background processes, leading to lower tail latency,
and it processes requests in FIFO order, which further
reduces tail latency but also increases median latency. We
separate these two effects by installing a custom scheduler
into the Linux kernel, which chooses which of the null
RPC server’s threads to run using exactly the same policy
as CFS, but gives them strictly higher priority over any
other process on the system. We compare this non-FIFO
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Figure 6: Linux CFS scheduler (non-FIFO) running at
strictly higher priority versus realtime (FIFO) scheduler
for our Null RPC server.

scheduler to Linux’s realtime scheduler, which has both
strictly higher priority and FIFO ordering, in Figure 6.
The results are consistent with our theoretical analysis
(Figure 4).

4.3 Multicore

Next, we move from a single-core configuration to a multi-
core one. Our theoretical model predicts that increasing
concurrency in this way will inherently reduce tail latency
(Section 2.3). Does this effect occur in practice? To test
this, we run our applications on four cores. For this exper-
iment, we activated four cores on the same physical CPU
to avoid (for the moment) NUMA and cache coherence
effects. When scaling up the server to four cores, we also
scale up the workload by a factor of 4 to maintain the
same overall server utilization.

Figure 7 shows the ideal latency distribution for both
the single core and multi-core setup, as well as the actual
measurements. For two of the applications, moving to a
multi-core server improves tail latency, as predicted by
the theoretical model. Both the null RPC server and Mem-
cached see latency results that are better than even the
ideal for a single-CPU server, although a gap still remains
between the measured performance and the multi-CPU
ideal. The results for Nginx, however, remain essentially
unchanged from the single-core case.

Recall the caveat from Section 2.3: in order for in-
creasing the number of processors to benefit tail latency,
the system must follow a single-queue model where any
processor can process any request. This is the case for
both Memcached and the null RPC server, but not Nginx.
Memcached naturally follows the single-queue model, be-
cause all worker threads pull messages from a single UDP
socket. The null RPC server also resembles a single-CPU
system because CPUs pull threads from the pool of all
runnable threads. However, Nginx assigns TCP connec-
tions to specific workers. Our experiments send multiple
requests over a persistent HTTP 1.1 connection to avoid
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Figure 7: Tail latency improvement as we scale to multiple cores. 4 cores at 75%-80% utilization.

the connection setup cost, so every request can only be
handled by the worker thread responsible for the connec-
tion it was sent on. Nginx thus resembles a multi-queue
system where each worker has its own request queue. Sec-
tion 2.4 predicts that such a system will have the same
latency distribution as a single-CPU setup, and our exper-
iments bear this out.

One possible way to force Nginx to behave as a single-
queue system is to run more worker processes than there
are cores in the system, e.g., one worker per TCP con-
nection. In this configuration, the kernel scheduler would
be free to migrate workers between cores. This approach,
shown as the “Nginx Single Queue” line in Figure 7(c),
is indeed effective at reducing tail latency. However, run-
ning Nginx in this unusual way incurs large memory and
context-switching overhead that causes a 30% decrease
in overall throughput. We therefore abandon this configu-
ration, and use the standard multi-queue configuration in
our subsequent experiments. In recognition of this effect,
for subsequent experiments we plot the ideal server line
for Nginx using the multiple-queue model.

4.4 Interrupt Processing
Even after negating the effects of background processes
and non-FIFO scheduling, we still notice a gap of 2-3×
between the ideal and measured 99th percentile latency
for each application. Even though the server applications
have strict priority over (and can preempt) background
processes, requests are still delayed. Our analysis identi-
fied kernel interrupt processing as the cause. When pack-
ets arrive at the NIC, the NIC interrupts a host CPU to
initiate packet processing, triggering the kernel to receive
the packet and process it through the TCP or UDP stack.
By default, these interrupts are spread across all CPUs in
the system by the “irqbalance” daemon to keep all CPUs
at similar utilization. Hence, our application threads were
interrupted frequently by incoming packets.

This behavior causes the system to deviate from the
ideal model in two ways. First, each request no longer
takes a fixed amount of time to process: the interrupt intro-

duces context-switching overhead. Second, the processing
is no longer done in a FIFO manner. Some part of a later
request (the network stack processing) takes place before
the application-level processing of an earlier request is
completely finished.

In order to fix these issues, we configured the system
to dedicate a single core for interrupt processing and used
the remaining three cores to run application threads. This
ensures that the application threads are not preempted
by interrupts, and we maintain FIFO-ness in the whole
system. Figure 8 shows the improvement we obtain by
making this change. We are now very close to the ideal
latency distribution and off by only a few microseconds.
(Note that the ideal server line for Nginx in Figure 8(c)
reflects the optimal latency for the multi-queue configura-
tion, as discussed in Section 4.3.)

Employing this approach means that we must carefully
balance the number of cores dedicated to interrupt process-
ing and to the application. Otherwise, we might end up
wasting resources because we do not end up fully saturat-
ing the dedicated interrupt core, and hence achieve lower
throughput. For Memcached and our null RPC server, this
ratio was roughly 1:3. A single core can process around
350,000 packet interrupts per second and each applica-
tion thread can process 120,000 requests per second. For
applications that perform more application-level process-
ing, a higher ratio may be necessary. For large multicore
systems, multiple cores may need to be dedicated to pro-
cessing interrupts.

Looking to the future, we suspect that many server
systems on large multicore systems will benefit from spa-
tial allocation of cores to processes and threads, rather
than the temporal multiplexing of multiple applications
on each core. Over long time scales (minutes), the num-
ber of cores allocated to each application can change.
Over short time scales (microseconds to seconds), this
allocation would remain fixed, helping to prevent latency
tail effects caused by interference and context switching
between applications.
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Figure 8: Impact of directing interrupts to a specific core versus spreading across all cores. In the first case, interrupts
are spread across all cores, whereas in the second case interrupts go to a dedicated core and application threads run on
remaining cores.
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Figure 9: Impact of NUMA aware memory allocation in
Memcached running on 8 cores (across NUMA nodes) at
75% utilization.

4.5 NUMA effects

As we scale our system beyond multiple cores on a single
CPU to multiple CPUs, new issues related to non-uniform
memory access latency (NUMA) arise. We investigate
these issues by running Memcached with 8 threads spread
across the two processors in our system, with dedicated
interrupt cores on each processor. Our theoretical model
anticipates that this will improve tail latency because the
number of workers has doubled. Figure 9 shows that the
opposite is true: the tail latency is in fact worse than
running on a single core.

Our investigation revealed that the cause of this in-
crease is increased memory access latency. This problem
is caused in part by Linux’s default NUMA memory allo-
cation policy. By default, Linux allocates memory from a
single NUMA node to a process, until no more memory is
available on that node. As a result, half of the Memcached
threads must make cross-NUMA-node memory accesses,
which have higher latency. We do not observe the same
issue in our null RPC server or Nginx, because they are
less memory intensive than Memcached.

As an alternative, we run two instances of Memcached,
one on each processor. We force each instance to allocate

only memory from the same NUMA node using numactl.
Figure 9 shows the improvement we achieve.

4.6 Power Saving Optimizations
All of our previous experiments have considered high-
utilization systems (80% CPU utilization). At lower uti-
lization levels, hardware power saving optimizations
come into play. Our server, like nearly all machines to-
day, incorporates several CPU power saving optimiza-
tions, such as idle power states and frequency scaling.
These optimizations save precious energy resources, but
they inflate the tail latency at low utilizations. Indeed,
they cause a counter-intuitive effect: while our theoretical
model would predict lower tail latency for low-utilization
systems, power saving mechanisms can cause these sys-
tems to have higher tail latency. We see this effect when
running our servers at 10% utilization (Figure 10).

When CPUs become idle, they can be placed in an
energy-saving state referred to as “C-state”. There are
multiple C-states, each causing more components of the
CPU subsystems to be shut down. For example, on our In-
tel CPU, the C1 state stops the main internal clock, while
the C3 state stops all internal and external clocks. Linux
chooses which C-state to use based on CPU utilization
and other factors. However, a higher C-state requires a
longer wake up time, and the actual wake up time varies
for different systems. Requests that are executed on a
processor in power-saving mode will experience a higher
latency than usual because they are delayed while the
CPU is reactivated. Our testing machine has a wake up
time of 200 microseconds for state C3 (the highest C-state
in our machine), and we observe some requests delayed
by this amount for all applications in Figure 10. By dis-
abling power-saving states, forcing the CPU to stay in
state C0 (running), we eliminate the highest-latency part
of the tail, at the cost of increasing the CPU’s power draw.

A second power conserving feature is dynamic fre-
quency scaling, where the operating system dynamically

9
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Figure 10: Impact of power saving optimizations on tail latency at low (10%) utilization.

changes the processor clock frequency. Frequency scal-
ing has previously been identified as a source of tail la-
tency [17]. When the CPU is mostly idle, the operating
system reduces the clock frequency to save power. If a
CPU-bound request executes while the CPU frequency
is reduced, it can take longer time than usual. Figure 10
shows that this does not noticeably affect our null RPC
server and Memcached, which require little computation
for each request. However, Nginx, which is more CPU-
intensive, shows a slight improvement when the CPU is
forced to always run at maximum frequency.

4.7 Summary
We identified several ways in which hardware, operating
system policies, and application-level design choices can
impact measured tail latency. To summarize our observa-
tions and recommendations for mitigation:

• Interference from background processes has a large
effect on tail latency. Linux’s normal priority mech-
anism (niceness) isn’t sufficient to prevent this, but
realtime priority is effective.

• For multithreaded applications, a thread scheduler that
maintains FIFO ordering reduces tail latency.

• The increased concurrency of a multicore system can
help tail latency, but common concurrency architec-
tures can negate this effect by requiring certain re-
quests to be processed by specific workers.

• Dedicating certain cores to processing interrupts and
others to application processes is beneficial.

• Poor placement of threads and memory on NUMA
systems can lead to tail latency problems.

• At low utilization levels, there is a tradeoff between
power saving and tail latency.

Our techniques for mitigation are effective. We are able
to reduce the 99.9th percentile latency for each of the
three applications we studied to within a few percent of

optimal. In contrast, an untuned Linux system has 99.9th
percentile latency that exceeds the optimal value by two
to three orders of magnitude.

5 Related Work

Data center services are now routinely evaluated in terms
of their 99th or 99.9th percentile latency. Dean and Bar-
roso [5] described their efforts to tame tail latency in
Google’s interactive applications. Their goal is to allow
parallel systems to tolerate latency variability in individ-
ual components, to “create a predictably responsive whole
out of less-predictable parts [5].” The techniques they used
include re-issuing slow requests to a different host [6, 22],
replicating data using quorum protocols that do not re-
quire every replica to answer [11], or accepting slightly
incomplete results in information retrieval systems. More
recent work takes an end-to-end view of all stages of a
workload to choose which of these techniques to apply to
the different stages of a request [9]. Related techniques
have been used to avoid the “straggler” problem in data-
parallel computation frameworks like MapReduce and
Spark [2, 6, 7, 21, 22].

This body of work is complementary to our work on un-
derstanding and eliminating the sources of tail latency on
an individual servers. Their approach focuses on higher-
level techniques such as request replication in a distributed
system, whereas we studied and ameliorated hardware,
OS, and concurrency-model induced causes of tail latency.
Our efforts to improving the tail behavior of lower-level
components can benefit higher-level complex distributed
systems, but the techniques explored in others’ work may
still be necessary.

Chronos [10] also analyzed the sources of tail latency,
concluding that the majority of tail latency was caused
by kernel sources. They proposed avoiding this overhead
with kernel-bypass network APIs and packet classification
on the NIC. Our study takes a deeper look at the sources
of tail latency within the kernel, and in contrast to their
approach, we were able to achieve low median latency
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and good tail behavior using conventional network stacks.
In multi-tenant cluster environments, VMs for different

tasks can compete for shared resources, causing severe
latency variation. Bobtail [20] is a scheduler that places
latency-sensitive and compute-intensive VMs on differ-
ent hosts, and DeepDive [13] uses a more sophisticated
approach to detect interference. Our work has some simi-
larity, in that we have found it beneficial to pin the threads
or processes of servers on separate cores in order to isolate
them from interference caused by background processes.

The datacenter network can also be a source of tail
latency because of long queuing delays [1]. Deadline-
aware congestion control mechanism [15, 19] can help
alleviate this problem.

Real-time and time-sensitive OSs address related prob-
lems [8]. Similar to us, their goal is to respond to incoming
data within a predictable latency bound. To accomplish
this, these systems often need to perform admission con-
trol to avoid overcommitting resources. As well, they
need carefully designed schedulers to bound worst-case
scheduling delays, and they must avoid long critical sec-
tions to prevent head-of-line blocking and priority inver-
sion. Typically, these systems do not attempt to provide
high throughput. In contrast, we are focused on systems
that run at relatively high utilization. We recognize that
some latency jitter or variation is inevitable due to burst-
ing arrivals, and our goal is to identify and eliminate other
sources of latency variation in the system.

6 Discussion

Our study reaffirmed the common belief that tail latency
is highly sensitive to background processes and daemons.
This suggests that we explore other ways of sharing CPU
resources, particularly in shared environments where we
would like to co-locate multiple latency-sensitive services
on the same host. Spatial scheduling – partitioning CPU
cores among applications – seems an attractive alternative
to conventional time-sharing. Others have proposed it as a
way to manage forthcoming large multicore systems [18],
and we believe that predictable latency provides another
strong motivation. We have already seen an example of
its benefits, in that dedicating certain cores to interrupt
processing can reduce tail latency.

There has been a longstanding debate in the systems
community over the superiority of threads or events for
managing concurrency. Prior work has dissected their
relative merits in terms of performance, scalability, and
programmability [4, 16]. Our study adds a new angle to
this old debate: certain architectural choices affect the tail
latency of a network server. Thread-based architectures
require a thread scheduler that ensures FIFO ordering to
achieve optimal tail latency (and such a scheduler is not
used by default in Linux). Event-driven architectures must

ensure that any request can be handled by any worker;
otherwise, as with Nginx, they will negate the benefits of
parallelism for reducing tail latency.

7 Conclusion

This paper explored hardware, OS, and application-level
causes of tail latency in multi-core servers. Known results
from queuing theory explain why the natural burstiness
in request arrival processes will introduce an unavoidable
baseline of variable queuing delay. As well, the theory
shows how increased utilization worsens the latency tail,
how parallelism can improve the latency tail, and the
importance of choosing an appropriate queuing discipline.

There are many additional complicating factors that
affect servers’ latency tails. To understand them, we in-
strumented three applications: a multithreaded null RPC
server, Memcached, and the Nginx web server. Next,
we measured these servers’ response time distributions,
demonstrating that their latency tails are significantly
worse than what queuing models would predict. Our in-
strumentation helped us to identify the causes of the tail
inflation, including interference from background pro-
cesses, request re-ordering within the OS scheduler or
the application-level concurrency framework, poor inter-
rupt routing, CPU power saving mechanisms, and NUMA
effects.

We implemented several mechanisms and configuration
changes to fix these problems. To isolate the server from
background processes, we either use real-time schedul-
ing priorities or we isolate server threads/processes on
dedicated cores. To remedy non-FIFO OS scheduling, we
modified Linux’s scheduler. We showed that dedicating a
core to interrupt processing improves tail latency at a po-
tential cost to maximum throughput, and we showed that
under low utilization, CPU power savings mechanisms
hurt tail latency. Finally, to combat NUMA issues, we
pin server processes or threads to cores and force them to
allocate memory from the same NUMA node.

Our modifications substantially improved the tail la-
tency of all three servers, to the point where they behave
close to the ideal distributions predicted by queuing mod-
els. For example, we improved the 99.9th percentile la-
tency of Memcached at 75% utilization from 14 ms to 32
µs, an improvement of three orders of magnitude.
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