
Unlocking the Power of Inline Floating-Point 
Operations on Programmable Switches

Yifan Yuan1, Omar Alama2, Jiawei Fei2, 3, 
Jacob Nelson4, Dan R. K. Ports4, Amedeo Sapio5, 

Marco Canini2, Nam Sung Kim1

1UIUC, 2KAUST, 3NUDT, 4Microsoft Research, 5Intel
04/05/2022



Background & Motivation

2

• We are living in the era of programmable network.

• Networking switches with programmable pipeline, a.k.a.
programmable switches, have been prevailing.

Programmable switches provide basic compute capability, great
programmability and flexibility, while keeping line-rate forwarding.



Background & Motivation

3

• Programmable switches have been applied to accelerate/offload 
a wide range of networking and distributed applications.

Are we still missing anything?

NetChain (NSDI’18), DistCache (FAST’19)

NetCache (SOSP’17), HULA (SOSR’16)

Cheetah (SIGMOD’20), NETACCEL (CIDR’19)

Jaqen (Security’21), Poseidon (NDSS’20)

SwitchML (NSDI’21), ATP (NSDI’21)

NOPaxos (OSDI’16), Eris (SOSP’17)



Background & Motivation

4

• Protocol-independent switch architecture (PISA), the de-facto
programmable switch paradigm, has no support for floating
point (FP) data formats, which are common in many use cases.

It will be great if we can enable FP operations on PISA switch!

Training
gradient
is FP!

Datatype
can be FP!

Calculating
estimation
needs FP!



Challenges

5

• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• Integer (fixed point)?
• C = A +/- B, done. Easy and simple.

• The goal of this work is to let PISA switch
support FP operations efficiently.



Challenges

6

• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• FP?

0 001 0 1 0 00001 0011

Sign
1 bit

Biased Exponent
5 bits (k = 5)

Mantissa (Significand)
10 bits

Exponent = 24 + 20 = 17
Bias = 2k-1 - 1 = 25-1 – 1 = 15
Biased_exp = 17 – 15 = 2

Mantissa = 2-1 + 2-2 + 2-3 = 0.875

-10 x 22 x (20 + 0.875) = 7.5

Sign = 0
1 Implied “1” for mantissa



Challenges

7

• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• FP?
• C = A +/- B

001 0 1 001 0 0 0 00000 000110 00000 00001 001110 0000
A (7.5) + B (2.5)

0 001 0 0 0 00000 00010 001 0 1 0 00001 0011



Challenges

8

• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• FP?
• C = A +/- B

001 0 1

001 0 0 0 00000 000110 0000

0 00001 001110 0000
ExpA

ExpB

ManA

ManBImplied “1”1. Extract



Challenges

9

• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• FP?
• C = A +/- B

001 0 1

001 0 0 0 00000 000110 0000

0 00001 001110 0000
ExpA

ExpB

ManA

ManB
1. Extract
2. Align

ExpA – ExpB = 1
>> 1

00 0000 000110 0000



Challenges

10

• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• FP?
• C = A +/- B

001 0 1

001 0 0

0 00001 001110 0000
ExpA

ExpB

ManA

ManB
1. Extract
2. Align
3. Add/sub

+
00 0000 000110 0000

0 00001 000000 1000
= ManC



Challenges

11

• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• FP?
• C = A +/- B

001 0 1

001 0 0

ExpA

ExpB
1. Extract
2. Align
3. Add/sub
4. Renormalize

0 00001 000000 1000
ManC

The first “1” should always be at
the 5th bit, as the implied “1”

>> (5 - 4)

00 0001 000000 1000

ExpC
= Max(ExpA, ExpB) + (5 - 4)

101 0 0



Challenges

12

• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• FP?
• C = A +/- B

1. Extract
2. Align
3. Add/sub
4. Renormalize
5. Assemble

ManC

00 0001 000000 1000

ExpC

101 0 0

0 101 0 0 0 00000 0001

C = 10

1
Implied “1” for mantissa



• Why does the current PISA switch not support FP operation?
• Let’s see how arithmetic operation works under the hood at first!

• FP?
• C = A +/- B

Challenges

13

1. Extract
2. Align
3. Add/sub
4. Renormalize
5. Assemble

Every single 
block is 

complicated!

FP operations are not single-clock-cycle.



Challenges

14

• Going back to PISA architecture…
• Fully-pipelined streaming design (cannot go backward, cannot stall)
• ONE single action per stage
• ONE access per memory location per packet

FP cannot be done in single pipeline stage anyway!

Match + Action 

Programmable 
Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

Block diagram credit: Xin jin, et al., NetCache: Balancing Key-Value Stores with Fast In-network Caching (SOSP’17)



Challenges

15

• Other programmable switch paradigms instead of PISA?
• Switch with specific arithmetic support (e.g., Mellanox SHARP)?

• High-performance (throughput, latency, and scalability)
• Fixed functionalities, inflexible for emerging numerical formats (FP16, bfloat,

MSFP, etc.)

• FPGA-based “switch”?
• Flexible enough
• Not as high-performance (overall-throughput) as ASIC

PISA has the potential of balancing performance and flexibility.



16

FP PISA
+ = ?FPISA: Native FP representation

and operations in PISA



FPISA: High-level idea

17

• Decompose an FP’s representation (storage) and operation to mutual-
independent, PISA-friendly steps.

• Keep the intermediate FP representation in PISA, until we need to get back
to the end-host(s).

• Leverage networking-specific hardware units for FP sub-operations.

ALU

ALU

8-bit 
Exponent

Array…

Memory

ALU

MAU2

ALU

ALU

32-bit 
Signed 

Mantissa
Array…

Memory

ALU

MAU4

ALU

ALU

…

ALU

MAU1

ALU

ALU

Exact 
Match 
Table…

Memory

ALU

MAU3MAU0

ALU

ALU

…

ALU

MAU7

ALU

ALU

…

ALU

MAU5

ALU

ALU

TCAM
LPM
Table…

Memory

ALU

MAU6 MAU8

Split bits Add 
implied “1”

Get exponent difference /
overwirte

Shift in-metadata 
mantissa

Signed add/sub/
overwrite mantissa

Convert to 
unsigned

Count leading “0”s, 
shift mantissa

Adjust 
exponent Merge bits

Extract Align Add/sub Renormalize & Assemble



FPISA: FP representation and storage in PISA

18

• We decouple the three components of a FP number and store them
separately in PISA pipeline.

23-bit Mantissa8-bit ExponentSign

MAU

…

MAU

……



FPISA: FP representation and storage in PISA

19

• We decouple the three components of a FP number and store them
separately in PISA pipeline.

23-bit Mantissa8-bit ExponentSign

MAU

…

MAU

……

8-bit Exponent 
Array



FPISA: FP representation and storage in PISA

20

• We decouple the three components of a FP number and store them
separately in PISA pipeline.

23-bit Mantissa8-bit ExponentSign

MAU

…

MAU

……

8-bit Exponent 
Array



FPISA: FP representation and storage in PISA

21

• We decouple the three components of a FP number and store them
separately in PISA pipeline.

23-bit Mantissa8-bit ExponentSign

MAU

…

MAU

……

8-bit Exponent 
Array

32-bit Signed 
Mantissa Array

encoded in 2’s
complement



FPISA: Delayed normalization

22

• Suppose we want to calculate V1 + V2 + V3 = V4

MAU

…

8-bit Exponent 
Array

MAU
32-bit Signed 

Mantissa Array

……

Exp1 Man1

Exp2 Man2

+

Cannot go
back to adjust

exponent!



FPISA: Delayed normalization

23

• Suppose we want to calculate V1 + V2 + V3 = V4

• We delay the step “renormalization” until we need to get the result
back to the end-host(s).

MAU

…

8-bit Exponent 
Array

MAU
32-bit Signed 

Mantissa Array

……

Exp1 Man1

Exp2

Exp3

Man2

Man3

++Exp Man



FPISA: Delayed normalization

24

• Suppose we want to calculate V1 + V2 + V3 = V4

• We delay the step “renormalization” until we need to get the result
back to the end-host(s).

MAU

…

8-bit Exponent 
Array

MAU
32-bit Signed 

Mantissa Array

……

Renormalize & Assemble

ALU

ALU

…

ALU

MAU7

ALU

ALU
…

ALU

MAU5

ALU

ALU

TCAM
LPM
Table…

Memory

ALU

MAU6 MAU8

Convert to 
unsigned

Count leading “0”s, 
shift mantissa

Adjust 
exponent Merge bits

Exp

Man

Exp4 Man4



FPISA: Leverage networking hardware

25

Renormalize & Assemble

ALU

ALU

…

ALU

MAU7

ALU

ALU

…

ALU

MAU5

ALU

ALU

TCAM
LPM
Table…

Memory

ALU

MAU6 MAU8

Convert to 
unsigned

Count leading “0”s, 
shift mantissa

Adjust 
exponent Merge bits

TCAM
LPM
Table

• For renormalization, we need to find how many leading “0” we have in the
operated mantissa, so that we can shift it and adjust the exponent.

• How can we do this efficiently and quickly?



FPISA: Leverage networking hardware

26

• For renormalization, we need to find how many leading “0” we have in the
operated mantissa, so that we can shift it and adjust the exponent.

• How can we do this efficiently and quickly?

TCAM
LPM
Table

Match

IP address/mask

…

Action

Action

…

IP address/mask Binary format

64.0.0.0/2 1 “0” + 1 “1” + 30 “*”s 
32.0.0.0/3 2 “0”s + 1 “1” + 29 “*”s 
16.0.0.0/4 3 “0”s + 1 “1” + 28 “*”s 

… …

Counting
leading “0”s!

Match (Manmetadata) 

64.0.0.0/2

…

1.0.0.0/8

0.64.0.0/10

…

0.0.0.1/32

Action (Manmetadata)

Right-shift 7 bits

…

Right-shift 1 bit

Left-shift 1 bit

…

Left-shift 23 bits

Default Do nothing

0.128.0.0/9 Do nothing



• We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

• Example-1: saturated VLIW instruction slots –> limited data parallelism 

Are we done?

27

Renormalize & Assemble

ALU

ALU

…

ALU

MAU7

ALU

ALU

…

ALU

MAU5

ALU

ALU

TCAM
LPM
Table…

Memory

ALU

MAU6 MAU8

Convert to 
unsigned

Count leading “0”s, 
shift mantissa

Adjust 
exponent Merge bits

Match (Manmetadata) 

64.0.0.0/2

…

1.0.0.0/8

0.64.0.0/10

…

0.0.0.1/32

Action (Manmetadata)

Right-shift 7 bits

…

Right-shift 1 bit

Left-shift 1 bit

…

Left-shift 23 bits

Default Do nothing

0.128.0.0/9 Do nothing



Are we done?

28

• We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

• Example-1: saturated VLIW instruction slots –> limited data parallelism 
• Enhancement: 2-operand shift instruction –> “shift [operand0] [operand1]”

Each action is a
single instruction
stored in the small

buffer!

Renormalize & Assemble

ALU

ALU

…

ALU

MAU7

ALU

ALU

…

ALU

MAU5

ALU

ALU

TCAM
LPM
Table…

Memory

ALU

MAU6 MAU8

Convert to 
unsigned

Count leading “0”s, 
shift mantissa

Adjust 
exponent Merge bits

Match (Manmetadata) 

64.0.0.0/2

…

1.0.0.0/8

0.64.0.0/10

…

0.0.0.1/32

Action (Manmetadata)

Right-shift 7 bits

…

Right-shift 1 bit

Left-shift 1 bit

…

Left-shift 23 bits

Default Do nothing

0.128.0.0/9 Do nothing



Are we done?

29
Endianness conversion rate that a core can achieve
and that is desired to achieve 100Gbps line-rate.

• We implement FPISA with P4 in Intel’s Tofino-1 and find it not efficient enough.

• Example-1: saturated VLIW instruction slots –> limited data parallelism 
• Enhancement: 2-operand shift instruction –> “shift [operand0] [operand1]”

• Example-2: CPU-network endianness difference -> conversion overhead on end-host
• Enhancement: byte-wise shuffling in switch pipeline/parser

Evaluation shows that our enhancements add negligible overhead
to the current PISA hardware, while at least 8x cheaper than FPU.



Usecase: In-network aggregation for distributed ML training

30

• What’s the procedure of data communication in state-of-the-art frameworks?
• Note: we focus on the most popular “data parallel” mode.

Data

W
or
ke

r

Data

W
or
ke

r

Data

W
or
ke

r

Data

W
or
ke

r

+ + + =

Gradient
Vector

Aggregated 
Gradient
Vector

Local computing
on each worker

Update local model,
run next iteration….

In-switch Aggregation
Need quantization (to

fixed point) on the
end-hosts!
Need to recover

to FP on the
end-hosts!



Evaluation

31

• Given the aforementioned hardware limitation, we develop a C
program exactly simulating FPISA addition behavior (both FP32 and
FP16) for model convergence evaluation.

• We also leverage the SwitchML (NSDI’21) framework to evaluate the
(emulated) end-to-end training time speedup in a real cluster.



Evaluation – Training accuracy and convergence

32

• We apply FPISA’s addition (both FP132 and FP16) to models training, 
and compare the accuracy curves against the ones generated with 
default standard FP addition.

FPISA has negligible impact on trained model’s convergence.



Evaluation – Training time speedup

33

• We compare FPISA’s training time with fixed point based SwitchML,
which conducts quantization with 2 or 8 CPU cores.

End-to-end training time speedup of FPISA compared
to the default SwitchML with 8 cores.



Evaluation – Training time speedup

34

End-to-end training time speedup of FPISA compared
to the default SwitchML with 2 cores.

FPISA can bring training speedup as well as efficient end-host resource usage
compared to the state-of-the-art solutions.

> 40% drop with limited hardware
in SwitchML for quantization!

• We compare FPISA’s training time with fixed point based SwitchML,
which conducts quantization with 2 or 8 CPU cores.



35

More details in the paper

• FPISA’s error and precision analysis.

• Error-tolerance and numerical characteristics of gradient
aggregation in distributed training.

• GPU’s potential for gradient quantization.

• Additional FP features and advanced FP operations in PISA.

• ……



36

Conclusion

• Floating point is an important format that is desirable to be
supported on modern programmable dataplane with low
cost and high flexibility.

• We Propose FPISA approach and a couple of cheap
hardware enhancements, which, together, store and
operate floating-point numbers in common PISA pipeline.

• Our evaluation on distributed ML training shows that FPISA
can significantly facilitate the application execution and
reduce end-host resource usage.



Questions? Contact me!
yifany3@Illinois.edu


